CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Combining Recurrent Neural Networks and Adversarial Training for Human Motion Synthesis and Control
Wang, Zhiyong1,2; Chai, Jinxiang3; Xia, Shihong1,2
2021
发表期刊IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
ISSN1077-2626
卷号27期号:1页码:14-28
摘要This paper introduces a new generative deep learning network for human motion synthesis and control. Our key idea is to combine recurrent neural networks (RNNs) and adversarial training for human motion modeling. We first describe an efficient method for training an RNN model from prerecorded motion data. We implement RNNs with long short-term memory (LSTM) cells because they are capable of addressing the nonlinear dynamics and long term temporal dependencies present in human motions. Next, we train a refiner network using an adversarial loss, similar to generative adversarial networks (GANs), such that refined motion sequences are indistinguishable from real mocap data using a discriminative network. The resulting model is appealing for motion synthesis and control because it is compact, contact-aware, and can generate an infinite number of naturally looking motions with infinite lengths. Our experiments show that motions generated by our deep learning model are always highly realistic and comparable to high-quality motion capture data. We demonstrate the power and effectiveness of our models by exploring a variety of applications, ranging from random motion synthesis, online/offline motion control, and motion filtering. We show the superiority of our generative model by comparison against baseline models.
关键词Hidden Markov models Data models Training Generators Mathematical model Recurrent neural networks Animation Deep learning adversarial training human motion modeling synthesis and control
DOI10.1109/TVCG.2019.2938520
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61772499] ; Natural Science Foundation of Beijing Municipality[L182052]
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号WOS:000594242000002
出版者IEEE COMPUTER SOC
引用统计
被引频次:45[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/16503
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Chai, Jinxiang; Xia, Shihong
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing Key Lab Mobile Comp & Pervas Device, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Texas A&M Univ, Uvalde, TX 78801 USA
推荐引用方式
GB/T 7714
Wang, Zhiyong,Chai, Jinxiang,Xia, Shihong. Combining Recurrent Neural Networks and Adversarial Training for Human Motion Synthesis and Control[J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,2021,27(1):14-28.
APA Wang, Zhiyong,Chai, Jinxiang,&Xia, Shihong.(2021).Combining Recurrent Neural Networks and Adversarial Training for Human Motion Synthesis and Control.IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,27(1),14-28.
MLA Wang, Zhiyong,et al."Combining Recurrent Neural Networks and Adversarial Training for Human Motion Synthesis and Control".IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 27.1(2021):14-28.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Zhiyong]的文章
[Chai, Jinxiang]的文章
[Xia, Shihong]的文章
百度学术
百度学术中相似的文章
[Wang, Zhiyong]的文章
[Chai, Jinxiang]的文章
[Xia, Shihong]的文章
必应学术
必应学术中相似的文章
[Wang, Zhiyong]的文章
[Chai, Jinxiang]的文章
[Xia, Shihong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。