CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
EagleMine: Vision-guided Micro-clusters recognition and collective anomaly detection
Feng, Wenjie1,2; Liu, Shenghua1,2; Faloutsos, Christos3; Hooi, Bryan4; Shen, Huawei1,2; Cheng, Xueqi1,2
2021-02-01
发表期刊FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE
ISSN0167-739X
卷号115页码:236-250
摘要Given a graph with millions of nodes, what patterns exist in the distributions of node characteristics? How can we detect them and separate anomalous nodes in a way similar to human visual perception? More generally, how can we identify micro-clusters in a histogram and spot some interesting patterns? In this paper, we propose a vision-guided algorithm, EagleMine, to recognize and summarize node groups in a histogram constructed from some correlated features. EagleMine hierarchically discovers node groups, which form internally connected dense areas in the histogram, by utilizing a water -level tree with multiple resolutions according to the rule of the visual recognition. EagleMine uses the statistical hypothesis test to determine the optimal groups while exploring the tree and simultaneously performs vocabulary-based summarization. Moreover, EagleMine can identify anomalous micro-clusters, consisting of nodes that exhibit very similar and suspicious behavior, deviate away from the majority. Experiments on the real-world datasets show that our method can recognize intuitive node groups as human vision does; it achieves the best summarization performance compared to baselines. In terms of anomaly detection, EagleMine also outperforms the state-of-the-art graph-based methods with significantly improving accuracy in a micro-blog dataset. Moreover, EagleMine can be used for other applications, e.g., to detect the synchronized patterns in the temporal retweet event. (c) 2020 Elsevier B.V. All rights reserved.
关键词Pattern recognition Large graph mining Micro-clusters Anomaly detection Histogram
DOI10.1016/j.future.2020.08.033
收录类别SCI
语种英语
资助项目Strategic Priority Research Program of CAS, China[XDA19020400] ; NSF of China[61772498] ; NSF of China[61425016] ; NSF of China[91746301] ; NSF of China[61872206] ; Beijing NSF, China[4172059]
WOS研究方向Computer Science
WOS类目Computer Science, Theory & Methods
WOS记录号WOS:000591438600010
出版者ELSEVIER
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/16494
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Feng, Wenjie; Liu, Shenghua
作者单位1.Chinese Acad Sci, Inst Comp Technol, CAS Key Lab Network Data Sci & Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci UCAS, Beijing 100049, Peoples R China
3.Carnegie Mellon Univ, Comp Sci Dept, Pittsburgh, PA 15213 USA
4.Natl Univ Singapore, Dept Comp Sci, Singapore, Singapore
推荐引用方式
GB/T 7714
Feng, Wenjie,Liu, Shenghua,Faloutsos, Christos,et al. EagleMine: Vision-guided Micro-clusters recognition and collective anomaly detection[J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE,2021,115:236-250.
APA Feng, Wenjie,Liu, Shenghua,Faloutsos, Christos,Hooi, Bryan,Shen, Huawei,&Cheng, Xueqi.(2021).EagleMine: Vision-guided Micro-clusters recognition and collective anomaly detection.FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE,115,236-250.
MLA Feng, Wenjie,et al."EagleMine: Vision-guided Micro-clusters recognition and collective anomaly detection".FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE 115(2021):236-250.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Feng, Wenjie]的文章
[Liu, Shenghua]的文章
[Faloutsos, Christos]的文章
百度学术
百度学术中相似的文章
[Feng, Wenjie]的文章
[Liu, Shenghua]的文章
[Faloutsos, Christos]的文章
必应学术
必应学术中相似的文章
[Feng, Wenjie]的文章
[Liu, Shenghua]的文章
[Faloutsos, Christos]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。