CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A Two-Stage Triplet Network Training Framework for Image Retrieval
Min, Weiqing1,2; Mei, Shuhuan3; Li, Zhuo1,2; Jiang, Shuqiang1,2
2020-12-01
发表期刊IEEE TRANSACTIONS ON MULTIMEDIA
ISSN1520-9210
卷号22期号:12页码:3128-3138
摘要In this paper, we propose a novel framework for instance-level image retrieval. Recent methods focus on fine-tuning the Convolutional Neural Network (CNN) via a Siamese architecture to improve off-the-shelf CNN features. They generally use the ranking loss to train such networks, and do not take full use of supervised information for better network training, especially with more complex neural architectures. To solve this, we propose a two-stage triplet network training framework, which mainly consists of two stages. First, we propose a Double-Loss Regularized Triplet Network (DLRTN), which extends basic triplet network by attaching the classification sub-network, and is trained via simultaneously optimizing two different types of loss functions. Double-loss functions of DLRTN aim at specific retrieval task and can jointly boost the discriminative capability of DLRTN from different aspects via supervised learning. Second, considering feature maps of the last convolution layer extracted from DLRTN and regions detected from the region proposal network as the input, we then introduce the Regional Generalized-Mean Pooling (RGMP) layer for the triplet network, and re-train this network to learn pooling parameters. Through RGMP, we pool feature maps for each region and aggregate features of different regions from each image to Regional Generalized Activations of Convolutions (R-GAC) as final image representation. R-GAC is capable of generalizing existing Regional Maximum Activations of Convolutions (R-MAC) and is thus more robust to scale and translation. We conduct the experiment on six image retrieval datasets including standard benchmarks and recently introduced INSTRE dataset. Extensive experimental results demonstrate the effectiveness of the proposed framework.
关键词Image retrieval Feature extraction Convolution Training Image representation Task analysis Measurement
DOI10.1109/TMM.2020.2974326
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61532018] ; National Natural Science Foundation of China[61972378] ; Beijing Natural Science Foundation[L182054] ; National Program for Special Support of Eminent Professionals ; National Program for Support of Top-notch Young Professionals
WOS研究方向Computer Science ; Telecommunications
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Telecommunications
WOS记录号WOS:000591817700009
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:32[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/16369
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Jiang, Shuqiang
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Nanjing New Generat Artificial Intelligence Res I, Nanjing 210046, Peoples R China
推荐引用方式
GB/T 7714
Min, Weiqing,Mei, Shuhuan,Li, Zhuo,et al. A Two-Stage Triplet Network Training Framework for Image Retrieval[J]. IEEE TRANSACTIONS ON MULTIMEDIA,2020,22(12):3128-3138.
APA Min, Weiqing,Mei, Shuhuan,Li, Zhuo,&Jiang, Shuqiang.(2020).A Two-Stage Triplet Network Training Framework for Image Retrieval.IEEE TRANSACTIONS ON MULTIMEDIA,22(12),3128-3138.
MLA Min, Weiqing,et al."A Two-Stage Triplet Network Training Framework for Image Retrieval".IEEE TRANSACTIONS ON MULTIMEDIA 22.12(2020):3128-3138.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Min, Weiqing]的文章
[Mei, Shuhuan]的文章
[Li, Zhuo]的文章
百度学术
百度学术中相似的文章
[Min, Weiqing]的文章
[Mei, Shuhuan]的文章
[Li, Zhuo]的文章
必应学术
必应学术中相似的文章
[Min, Weiqing]的文章
[Mei, Shuhuan]的文章
[Li, Zhuo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。