CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Citation Intent Classification Using Word Embedding
Roman, Muhammad1; Shahid, Abdul1; Khan, Shafiullah1; Koubaa, Anis2,3; Yu, Lisu4,5
2021
发表期刊IEEE ACCESS
ISSN2169-3536
卷号9页码:9982-9995
摘要Citation analysis is an active area of research for various reasons. So far, statistical approaches are mainly used for citation analysis, which does not look into the internal context of the citations. Deep analysis of citation may reveal interesting findings by utilizing deep neural network algorithms. The existing scholarly datasets are best suited for statistical approaches but lack citation context, intent, and section information. Furthermore, the datasets are too small to be used with deep learning approaches. For citation intent analysis, the datasets must have a citation context labeled with different citation intent classes. Most of the datasets either do not have labeled context sentences, or the sample is too small to be generalized. In this study, we critically investigated the available datasets for citation intent and proposed an automated citation intent technique to label the citation context with citation intent. Furthermore, we annotated ten million citation contexts with citation intent from Citation Context Dataset (C2D) dataset with the help of our proposed method. We applied Global Vectors (GloVe), Infersent, and Bidirectional Encoder Representations from Transformers (BERT) word embedding methods and compared their Precision, Recall, and F1 measures. It was found that BERT embedding performs significantly better, having an 89% Precision score. The labeled dataset, which is freely available for research purposes, will enhance the study of citation context analysis. Finally, It can be used as a benchmark dataset for finding the citation motivation and function from in-text citations.
关键词Metadata Citation analysis Computational modeling Licenses Context modeling Task analysis Semantics Citation intent citation analysis citation context citation motivation citation function classification word embedding scholarly dataset
DOI10.1109/ACCESS.2021.3050547
收录类别SCI
语种英语
资助项目State Key Laboratory of Computer Architecture (ICT, CAS) Open Project[CARCHB202019]
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000609801100001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:30[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/16328
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Yu, Lisu
作者单位1.Kohat Univ Sci & Technol, Inst Comp, Kohat 26000, Pakistan
2.Prince Sultan Univ, Robot & Internet Things Lab, Riyadh 12435, Saudi Arabia
3.Polytech Inst Porto, CISTER INESC TEC, P-4200 Porto, Portugal
4.Nanchang Univ, Sch Informat Engn, Nanchang 330031, Jiangxi, Peoples R China
5.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Roman, Muhammad,Shahid, Abdul,Khan, Shafiullah,et al. Citation Intent Classification Using Word Embedding[J]. IEEE ACCESS,2021,9:9982-9995.
APA Roman, Muhammad,Shahid, Abdul,Khan, Shafiullah,Koubaa, Anis,&Yu, Lisu.(2021).Citation Intent Classification Using Word Embedding.IEEE ACCESS,9,9982-9995.
MLA Roman, Muhammad,et al."Citation Intent Classification Using Word Embedding".IEEE ACCESS 9(2021):9982-9995.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Roman, Muhammad]的文章
[Shahid, Abdul]的文章
[Khan, Shafiullah]的文章
百度学术
百度学术中相似的文章
[Roman, Muhammad]的文章
[Shahid, Abdul]的文章
[Khan, Shafiullah]的文章
必应学术
必应学术中相似的文章
[Roman, Muhammad]的文章
[Shahid, Abdul]的文章
[Khan, Shafiullah]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。