Institute of Computing Technology, Chinese Academy IR
Citation Intent Classification Using Word Embedding | |
Roman, Muhammad1; Shahid, Abdul1; Khan, Shafiullah1; Koubaa, Anis2,3; Yu, Lisu4,5 | |
2021 | |
发表期刊 | IEEE ACCESS |
ISSN | 2169-3536 |
卷号 | 9页码:9982-9995 |
摘要 | Citation analysis is an active area of research for various reasons. So far, statistical approaches are mainly used for citation analysis, which does not look into the internal context of the citations. Deep analysis of citation may reveal interesting findings by utilizing deep neural network algorithms. The existing scholarly datasets are best suited for statistical approaches but lack citation context, intent, and section information. Furthermore, the datasets are too small to be used with deep learning approaches. For citation intent analysis, the datasets must have a citation context labeled with different citation intent classes. Most of the datasets either do not have labeled context sentences, or the sample is too small to be generalized. In this study, we critically investigated the available datasets for citation intent and proposed an automated citation intent technique to label the citation context with citation intent. Furthermore, we annotated ten million citation contexts with citation intent from Citation Context Dataset (C2D) dataset with the help of our proposed method. We applied Global Vectors (GloVe), Infersent, and Bidirectional Encoder Representations from Transformers (BERT) word embedding methods and compared their Precision, Recall, and F1 measures. It was found that BERT embedding performs significantly better, having an 89% Precision score. The labeled dataset, which is freely available for research purposes, will enhance the study of citation context analysis. Finally, It can be used as a benchmark dataset for finding the citation motivation and function from in-text citations. |
关键词 | Metadata Citation analysis Computational modeling Licenses Context modeling Task analysis Semantics Citation intent citation analysis citation context citation motivation citation function classification word embedding scholarly dataset |
DOI | 10.1109/ACCESS.2021.3050547 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | State Key Laboratory of Computer Architecture (ICT, CAS) Open Project[CARCHB202019] |
WOS研究方向 | Computer Science ; Engineering ; Telecommunications |
WOS类目 | Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications |
WOS记录号 | WOS:000609801100001 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/16328 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Yu, Lisu |
作者单位 | 1.Kohat Univ Sci & Technol, Inst Comp, Kohat 26000, Pakistan 2.Prince Sultan Univ, Robot & Internet Things Lab, Riyadh 12435, Saudi Arabia 3.Polytech Inst Porto, CISTER INESC TEC, P-4200 Porto, Portugal 4.Nanchang Univ, Sch Informat Engn, Nanchang 330031, Jiangxi, Peoples R China 5.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Roman, Muhammad,Shahid, Abdul,Khan, Shafiullah,et al. Citation Intent Classification Using Word Embedding[J]. IEEE ACCESS,2021,9:9982-9995. |
APA | Roman, Muhammad,Shahid, Abdul,Khan, Shafiullah,Koubaa, Anis,&Yu, Lisu.(2021).Citation Intent Classification Using Word Embedding.IEEE ACCESS,9,9982-9995. |
MLA | Roman, Muhammad,et al."Citation Intent Classification Using Word Embedding".IEEE ACCESS 9(2021):9982-9995. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论