CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Sparse Data Driven Mesh Deformation
Gao, Lin1; Lai, Yu-Kun2; Yang, Jie1; Zhang, Ling-Xiao1; Xia, Shihong1; Kobbelt, Leif3
2021-03-01
发表期刊IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
ISSN1077-2626
卷号27期号:3页码:2085-2100
摘要Example-based mesh deformation methods are powerful tools for realistic shape editing. However, existing techniques typically combine all the example deformation modes, which can lead to overfitting, i.e., using an overly complicated model to explain the user-specified deformation. This leads to implausible or unstable deformation results, including unexpected global changes outside the region of interest. To address this fundamental limitation, we propose a sparse blending method that automatically selects a smaller number of deformation modes to compactly describe the desired deformation. This along with a suitably chosen deformation basis including spatially localized deformation modes leads to significant advantages, including more meaningful, reliable, and efficient deformations because fewer and localized deformation modes are applied. To cope with large rotations, we develop a simple but effective representation based on polar decomposition of deformation gradients, which resolves the ambiguity of large global rotations using an as-consistent-as-possible global optimization. This simple representation has a closed form solution for derivatives, making it efficient for our sparse localized representation and thus ensuring interactive performance. Experimental results show that our method outperforms state-of-the-art data-driven mesh deformation methods, for both quality of results and efficiency.
关键词Strain Shape Deformable models Interpolation Computational modeling Geometry Manifolds Data driven sparsity large scale deformation real-time deformation
DOI10.1109/TVCG.2019.2941200
收录类别SCI
语种英语
资助项目Beijing Municipal Natural Science Foundation[L182016] ; National Natural Science Foundation of China[61872440] ; National Natural Science Foundation of China[61828204] ; Youth Innovation Promotion Association CAS ; Young Elite Scientists Sponsorship Program by CAST[2017QNRC001] ; CCF-Tencent Open Fund ; SenseTime Research Fund ; Open Project Program of State Key Laboratory of Virtual Reality Technology and Systems, Beihang University[VRLAB2019C01]
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号WOS:000613744500016
出版者IEEE COMPUTER SOC
引用统计
被引频次:40[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/16258
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Gao, Lin
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing Key Lab Mobile Comp & Pervas Device, Beijing 100190, Peoples R China
2.Cardiff Univ, Sch Comp Sci & Informat, Visual Comp Grp, Cardiff CF10 3AT, Wales
3.Rhein Westfal TH Aachen, Inst Comp Graph & Multimedia, D-52062 Aachen, Germany
推荐引用方式
GB/T 7714
Gao, Lin,Lai, Yu-Kun,Yang, Jie,et al. Sparse Data Driven Mesh Deformation[J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,2021,27(3):2085-2100.
APA Gao, Lin,Lai, Yu-Kun,Yang, Jie,Zhang, Ling-Xiao,Xia, Shihong,&Kobbelt, Leif.(2021).Sparse Data Driven Mesh Deformation.IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,27(3),2085-2100.
MLA Gao, Lin,et al."Sparse Data Driven Mesh Deformation".IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 27.3(2021):2085-2100.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gao, Lin]的文章
[Lai, Yu-Kun]的文章
[Yang, Jie]的文章
百度学术
百度学术中相似的文章
[Gao, Lin]的文章
[Lai, Yu-Kun]的文章
[Yang, Jie]的文章
必应学术
必应学术中相似的文章
[Gao, Lin]的文章
[Lai, Yu-Kun]的文章
[Yang, Jie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。