CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Augmented Adversarial Training for Cross-Modal Retrieval
Wu, Yiling1,2; Wang, Shuhui1; Song, Guoli3; Huang, Qingming1,4,5
2021
发表期刊IEEE TRANSACTIONS ON MULTIMEDIA
ISSN1520-9210
卷号23页码:559-571
摘要Cross-modal retrieval has received considerable attention in recent years. The core of cross-modal retrieval is to find a representation space to align data from different modalities according to their semantics. In this paper, we propose a cross-modal retrieval method that aligns data from different modalities by transferring one source modality to another target modality with augmented adversarial training. To preserve the semantic meaning in the modality transfer process, we employ the idea of conditional GANs and augment it. The key idea is to incorporate semantic information from the label space into the adversarial training process by sampling more semantic relevant and irrelevant source-target sample pairs. The augmented sample pairs improve the alignment from two aspects. First, relevant source-target sample pairs provide more training samples, leading to a better guidance of the alignment of fake targets and true paired targets. Second, relevant and irrelevant source-target sample pairs teach the discriminator to better distinguish true relevant pairs from fake relevant pairs, which guides the generator to better transfer from the source modality to the target modality. Extensive experiments compared with state-of-the-art methods show the promising power of our approach.
关键词Cross-modal retrieval data alignment adversa-rial training
DOI10.1109/TMM.2020.2985540
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2018AAA0102003] ; National Natural Science Foundation of China[61672497] ; National Natural Science Foundation of China[61620106009] ; National Natural Science Foundation of China[61836002] ; National Natural Science Foundation of China[61931008] ; National Natural Science Foundation of China[U1636214] ; Key Research Program of Frontier Sciences, CAS[QYZDJ-SSW-SYS013] ; China Postdoctoral Science Foundation[119103S291]
WOS研究方向Computer Science ; Telecommunications
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Telecommunications
WOS记录号WOS:000613560200004
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:18[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/16252
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, Shuhui
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Huawei Cloud & AI, Shenzhen 518129, Peoples R China
3.Peng Cheng Lab, Res Ctr Artificial Intelligence, Shenzhen 518066, Peoples R China
4.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 101408, Peoples R China
5.Peng Cheng Lab, Shenzhen 518066, Peoples R China
推荐引用方式
GB/T 7714
Wu, Yiling,Wang, Shuhui,Song, Guoli,et al. Augmented Adversarial Training for Cross-Modal Retrieval[J]. IEEE TRANSACTIONS ON MULTIMEDIA,2021,23:559-571.
APA Wu, Yiling,Wang, Shuhui,Song, Guoli,&Huang, Qingming.(2021).Augmented Adversarial Training for Cross-Modal Retrieval.IEEE TRANSACTIONS ON MULTIMEDIA,23,559-571.
MLA Wu, Yiling,et al."Augmented Adversarial Training for Cross-Modal Retrieval".IEEE TRANSACTIONS ON MULTIMEDIA 23(2021):559-571.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wu, Yiling]的文章
[Wang, Shuhui]的文章
[Song, Guoli]的文章
百度学术
百度学术中相似的文章
[Wu, Yiling]的文章
[Wang, Shuhui]的文章
[Song, Guoli]的文章
必应学术
必应学术中相似的文章
[Wu, Yiling]的文章
[Wang, Shuhui]的文章
[Song, Guoli]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。