Institute of Computing Technology, Chinese Academy IR
HTDet: A Clustering Method Using Information Entropy for Hardware Trojan Detection | |
Lu, Renjie1; Shen, Haihua1; Feng, Zhihua2; Li, Huawei3; Zhao, Wei1; Li, Xiaowei3 | |
2021-02-01 | |
发表期刊 | TSINGHUA SCIENCE AND TECHNOLOGY |
ISSN | 1007-0214 |
卷号 | 26期号:1页码:48-61 |
摘要 | Hardware Trojans (HTs) have drawn increasing attention in both academia and industry because of their significant potential threat. In this paper, we propose HTDet, a novel HT detection method using information entropy-based clustering. To maintain high concealment, HTs are usually inserted in the regions with low controllability and low observability, which will result in that Trojan logics have extremely low transitions during the simulation. This implies that the regions with the low transitions will provide much more abundant and more important information for HT detection. The HTDet applies information theory technology and a density-based clustering algorithm called Density-Based Spatial Clustering of Applications with Noise (DBSCAN) to detect all suspicious Trojan logics in the circuit under detection. The DBSCAN is an unsupervised learning algorithm, that can improve the applicability of HTDet. In addition, we develop a heuristic test pattern generation method using mutual information to increase the transitions of suspicious Trojan logics. Experiments on circuit benchmarks demonstrate the effectiveness of HTDet. |
关键词 | Hardware Trojan (HT) detection information entropy Density-Based Spatial Clustering of Applications with Noise (DBSCAN) unsupervised learning clustering mutual information test patterns generation |
DOI | 10.26599/TST.2019.9010047 |
收录类别 | SCI |
语种 | 英语 |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Information Systems ; Computer Science, Software Engineering ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000613236900005 |
出版者 | TSINGHUA UNIV PRESS |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/16188 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Shen, Haihua |
作者单位 | 1.Univ Chinese Acad Sci, Beijing 101408, Peoples R China 2.Beijing Inst Comp Technol & Applicat, Beijing 100854, Peoples R China 3.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Lu, Renjie,Shen, Haihua,Feng, Zhihua,et al. HTDet: A Clustering Method Using Information Entropy for Hardware Trojan Detection[J]. TSINGHUA SCIENCE AND TECHNOLOGY,2021,26(1):48-61. |
APA | Lu, Renjie,Shen, Haihua,Feng, Zhihua,Li, Huawei,Zhao, Wei,&Li, Xiaowei.(2021).HTDet: A Clustering Method Using Information Entropy for Hardware Trojan Detection.TSINGHUA SCIENCE AND TECHNOLOGY,26(1),48-61. |
MLA | Lu, Renjie,et al."HTDet: A Clustering Method Using Information Entropy for Hardware Trojan Detection".TSINGHUA SCIENCE AND TECHNOLOGY 26.1(2021):48-61. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论