CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Learning salient features to prevent model drift for correlation tracking
Zhang, Yu1,2; Gao, Xingyu1; Chen, Zhenyu3,4; Zhong, Huicai1; Li, Liang5; Yan, Chenggang6; Shen, Tao7
2020-12-22
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号418页码:1-10
摘要Correlation Filter (CF) based algorithms play an important role in the field of Visual Object Tracking (VOT) due to their high accuracy and low computational complexity. While existing CF tracking algorithms suf-fer performance degradation due to inaccurate object modeling. In this paper, we improve the object modeling accuracy in both CF training stage and target detection procedure to preventing the drift problem. Specifically, we propose a multi-model structure for CF trackers to capture the target appearance changes, where different appearance models are trained with specific samples to catch the salient features of the target and reduce the computational cost. Furthermore, a space filter for detection features is designed to suppress the boundary effect under Gaussian motion prior, which contributes to improving the accuracy of position estimation. We deploy our method to three hand-crafted features based CF trackers to perform real-time visual tracking on popular benchmarks. The experimental results demonstrate the efficacy of our proposed scheme and the efficiency of our trackers. In addition, we provide a comprehensive analysis of the proposed method to facilitate application. (c) 2019 Published by Elsevier B.V.
关键词Salient features Drift prevention Correlation tracking
DOI10.1016/j.neucom.2019.12.006
收录类别SCI
语种英语
资助项目National Nature Science Foundation of China[61702491] ; National Nature Science Foundation of China[61771457] ; National Nature Science Foundation of China[61732007]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000589911100001
出版者ELSEVIER
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/16074
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Gao, Xingyu; Chen, Zhenyu
作者单位1.Chinese Acad Sci, Inst Microelect, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Sch Microelect, Beijing, Peoples R China
3.State Grid Corp China, Big Data Ctr, Beijing, Peoples R China
4.China Elect Power Res Inst, Beijing, Peoples R China
5.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
6.Hangzhou Dianzi Univ, Inst Informat & Control, Hangzhou, Peoples R China
7.Kunming Univ Sci & Technol, Sch Informat Engn & Automat, Kunming, Yunnan, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Yu,Gao, Xingyu,Chen, Zhenyu,et al. Learning salient features to prevent model drift for correlation tracking[J]. NEUROCOMPUTING,2020,418:1-10.
APA Zhang, Yu.,Gao, Xingyu.,Chen, Zhenyu.,Zhong, Huicai.,Li, Liang.,...&Shen, Tao.(2020).Learning salient features to prevent model drift for correlation tracking.NEUROCOMPUTING,418,1-10.
MLA Zhang, Yu,et al."Learning salient features to prevent model drift for correlation tracking".NEUROCOMPUTING 418(2020):1-10.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Yu]的文章
[Gao, Xingyu]的文章
[Chen, Zhenyu]的文章
百度学术
百度学术中相似的文章
[Zhang, Yu]的文章
[Gao, Xingyu]的文章
[Chen, Zhenyu]的文章
必应学术
必应学术中相似的文章
[Zhang, Yu]的文章
[Gao, Xingyu]的文章
[Chen, Zhenyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。