CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Neural Serendipity Recommendation: Exploring the Balance between Accuracy and Novelty with Sparse Explicit Feedback
Xu, Yuanbo1; Yang, Yongjian1; Wang, En1; Han, Jiayu1; Zhuang, Fuzhen2,3,6,7; Yu, Zhiwen4; Xiong, Hui5
2020-07-01
发表期刊ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA
ISSN1556-4681
卷号14期号:4页码:25
摘要Recommender systems have been playing an important role in providing personalized information to users. However, there is always a trade-off between accuracy and novelty in recommender systems. Usually, many users are suffering from redundant or inaccurate recommendation results. To this end, in this article, we put efforts into exploring the hidden knowledge of observed ratings to alleviate this recommendation dilemma. Specifically, we utilize some basic concepts to define a concept, Serendipity, which is characterized by highsatisfaction and low-initial-interest. Based on this concept, we propose a two-phase recommendation problem which aims to strike a balance between accuracy and novelty achieved by serendipity prediction and personalized recommendation. Along this line, a Neural Serendipity Recommendation (NSR) method is first developed by combining Muti-Layer Percetron and Matrix Factorization for serendipity prediction. Then, a weighted candidate filtering method is designed for personalized recommendation. Finally, extensive experiments on real-world data demonstrate that NSR can achieve a superior serendipity by a 12% improvement in average while maintaining stable accuracy compared with state-of-the-art methods.
关键词Serendipity recommender system muti-layer percetron matrix factorization
DOI10.1145/3396607
收录类别SCI
语种英语
资助项目National Natural Science Foundations of China[61772230] ; National Natural Science Foundations of China[61972450] ; National Natural Science Foundations of China[61773361] ; Natural Science Foundation of China for Young Scholars[61702215] ; China Postdoctoral Science Foundation[2017M611322] ; China Postdoctoral Science Foundation[2018T110247] ; China Postdoctoral Science Foundation[BX20190140] ; Changchun Science and Technology Development Project[18DY005]
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering
WOS记录号WOS:000583626600013
出版者ASSOC COMPUTING MACHINERY
引用统计
被引频次:16[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/16014
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, En
作者单位1.Jilin Univ, Qianjin St 2699, Changchun 130012, Jilin, Peoples R China
2.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Beijing, Peoples R China
3.Beijing Adv Innovat Ctr Imaging Theory & Technol, Beijing, Peoples R China
4.Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shanxi, Peoples R China
5.Rutgers State Univ, Sch Business, Newark, NY USA
6.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
7.Capital Normal Univ, Beijing Adv Innovat Ctr Imaging Theory & Technol, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Xu, Yuanbo,Yang, Yongjian,Wang, En,et al. Neural Serendipity Recommendation: Exploring the Balance between Accuracy and Novelty with Sparse Explicit Feedback[J]. ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA,2020,14(4):25.
APA Xu, Yuanbo.,Yang, Yongjian.,Wang, En.,Han, Jiayu.,Zhuang, Fuzhen.,...&Xiong, Hui.(2020).Neural Serendipity Recommendation: Exploring the Balance between Accuracy and Novelty with Sparse Explicit Feedback.ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA,14(4),25.
MLA Xu, Yuanbo,et al."Neural Serendipity Recommendation: Exploring the Balance between Accuracy and Novelty with Sparse Explicit Feedback".ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA 14.4(2020):25.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, Yuanbo]的文章
[Yang, Yongjian]的文章
[Wang, En]的文章
百度学术
百度学术中相似的文章
[Xu, Yuanbo]的文章
[Yang, Yongjian]的文章
[Wang, En]的文章
必应学术
必应学术中相似的文章
[Xu, Yuanbo]的文章
[Yang, Yongjian]的文章
[Wang, En]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。