CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Deep unsupervised multi-modal fusion network for detecting driver distraction
Zhang, Yuxin1,2,3; Chen, Yiqiang1,2,3; Gao, Chenlong1,2,3
2021-01-15
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号421页码:26-38
摘要The risk of incurring a road traffic crash has increased year by year. Studies show that lack of attention during driving is one of the major causes of traffic accidents. In this work, in order to detect driver distraction, e.g., phone conversation, eating, texting, we introduce a deep unsupervised multi-modal fusion network, termed UMMFN. It is an end-to-end model composing of three main modules: multi-modal representation learning, multi-scale feature fusion and unsupervised driver distraction detection. The first module is to learn low-dimensional representation of multiple heterogeneous sensors using embedding subnetworks. The goal of multi-scale feature fusion is to learn both the temporal dependency for each modality and spatio dependencies from different modalities. The last module utilizes a ConvLSTM Encoder-Decoder model to perform an unsupervised classification task that is not affected by new types of driver behaviors. During the detection phase, a fine-grained detection decision can be made through calculating reconstruction error of UMMFN as a score for each captured testing data. We empirically compare the proposed approach with several state-of-the-art methods on our own multi-modal dataset for distracted driving behavior. Experimental results show that UMMFN has superior performance over the existing approaches. (c) 2020 Elsevier B.V. All rights reserved.
收录类别SCI
语种英语
资助项目National Key Research and Development Plan of China[2018YFC2000605] ; Beijing Natural Science Foundation[4194091] ; Beijing Municipal Science & Technology Commission[Z171100000117001]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000593102100003
出版者ELSEVIER
引用统计
被引频次:44[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/15970
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Chen, Yiqiang
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100190, Peoples R China
3.Beijing Key Lab Mobile Comp & Pervas Device, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Yuxin,Chen, Yiqiang,Gao, Chenlong. Deep unsupervised multi-modal fusion network for detecting driver distraction[J]. NEUROCOMPUTING,2021,421:26-38.
APA Zhang, Yuxin,Chen, Yiqiang,&Gao, Chenlong.(2021).Deep unsupervised multi-modal fusion network for detecting driver distraction.NEUROCOMPUTING,421,26-38.
MLA Zhang, Yuxin,et al."Deep unsupervised multi-modal fusion network for detecting driver distraction".NEUROCOMPUTING 421(2021):26-38.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Yuxin]的文章
[Chen, Yiqiang]的文章
[Gao, Chenlong]的文章
百度学术
百度学术中相似的文章
[Zhang, Yuxin]的文章
[Chen, Yiqiang]的文章
[Gao, Chenlong]的文章
必应学术
必应学术中相似的文章
[Zhang, Yuxin]的文章
[Chen, Yiqiang]的文章
[Gao, Chenlong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。