CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
High-Quality Video Generation from Static Structural Annotations
Sheng, Lu1; Pan, Junting2; Guo, Jiaming3; Shao, Jing4; Loy, Chen Change5
2020-05-28
发表期刊INTERNATIONAL JOURNAL OF COMPUTER VISION
ISSN0920-5691
页码18
摘要This paper proposes a novel unsupervised video generation that is conditioned on a single structural annotation map, which in contrast to prior conditioned video generation approaches, provides a good balance between motion flexibility and visual quality in the generation process. Different from end-to-end approaches that model the scene appearance and dynamics in a single shot, we try to decompose this difficult task into two easier sub-tasks in a divide-and-conquer fashion, thus achieving remarkable results overall. The first sub-task is an image-to-image (I2I) translation task that synthesizes high-quality starting frame from the input structural annotation map. The second image-to-video (I2V) generation task applies the synthesized starting frame and the associated structural annotation map to animate the scene dynamics for the generation of a photorealistic and temporally coherent video. We employ a cycle-consistent flow-based conditioned variational autoencoder to capture the long-term motion distributions, by which the learned bi-directional flows ensure the physical reliability of the predicted motions and provide explicit occlusion handling in a principled manner. Integrating structural annotations into the flow prediction also improves the structural awareness in the I2V generation process. Quantitative and qualitative evaluations over the autonomous driving and human action datasets demonstrate the effectiveness of the proposed approach over the state-of-the-art methods. The code has been released:.
关键词Unsupervised learning Conditioned generative model Image and video synthesis Motion prediction and estimatiovn
DOI10.1007/s11263-020-01334-x
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61906012] ; Singapore MOE AcRF Tier 1[2018-T1-002-056] ; NTU NAP ; NTU SUG
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000554776700001
出版者SPRINGER
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/15891
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Sheng, Lu
作者单位1.Beihang Univ, Coll Software, Beijing, Peoples R China
2.Chinese Univ Hong Kong, CUHK SenseTime Joint Lab, Hong Kong, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
4.SenseTime Res, Shenzhen, Guangdong, Peoples R China
5.Nanyang Technol Univ, SenseTime NTU Joint Res Ctr, Singapore, Singapore
推荐引用方式
GB/T 7714
Sheng, Lu,Pan, Junting,Guo, Jiaming,et al. High-Quality Video Generation from Static Structural Annotations[J]. INTERNATIONAL JOURNAL OF COMPUTER VISION,2020:18.
APA Sheng, Lu,Pan, Junting,Guo, Jiaming,Shao, Jing,&Loy, Chen Change.(2020).High-Quality Video Generation from Static Structural Annotations.INTERNATIONAL JOURNAL OF COMPUTER VISION,18.
MLA Sheng, Lu,et al."High-Quality Video Generation from Static Structural Annotations".INTERNATIONAL JOURNAL OF COMPUTER VISION (2020):18.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sheng, Lu]的文章
[Pan, Junting]的文章
[Guo, Jiaming]的文章
百度学术
百度学术中相似的文章
[Sheng, Lu]的文章
[Pan, Junting]的文章
[Guo, Jiaming]的文章
必应学术
必应学术中相似的文章
[Sheng, Lu]的文章
[Pan, Junting]的文章
[Guo, Jiaming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。