CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Accelerated LiDAR data processing algorithm for self-driving cars on the heterogeneous computing platform
Li, Wei1; Liang, Jun1; Zhang, Yunquan1; Jia, Haipeng2; Xiao, Lin1; Li, Qing1
2020-09-01
发表期刊IET COMPUTERS AND DIGITAL TECHNIQUES
ISSN1751-8601
卷号14期号:5页码:201-209
摘要In recent years, light detection and ranging (LiDAR) has been widely used in the field of self-driving cars, and the LiDAR data processing algorithm is the core algorithm used for environment perception in self-driving cars. At the same time, the real-time performance of the LiDAR data processing algorithm is highly demanding in self-driving cars. The LiDAR point cloud is characterised by its high density and uneven distribution, which poses a severe challenge in the implementation and optimisation of data processing algorithms. In view of the distribution characteristics of LiDAR data and the characteristics of the data processing algorithm, this study completes the implementation and optimisation of the LiDAR data processing algorithm on an NVIDIA Tegra X2 computing platform and greatly improves the real-time performance of LiDAR data processing algorithms. The experimental results show that compared with an Intel (R) Core (TM) i7 industrial personal computer, the optimised algorithm improves feature extraction by nearly 4.5 times, obstacle clustering by nearly 3.5 times, and the performance of the whole algorithm by 2.3 times.
关键词feature extraction optical radar optimisation optical information processing traffic engineering computing mobile robots automobiles accelerated LiDAR data processing algorithm self-driving cars heterogeneous computing platform optimisation NVIDIA Tegra X2 computing platform feature extraction obstacle clustering
DOI10.1049/iet-cdt.2019.0166
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61502036] ; General Project of Scientific Research Project of the Beijing Education Committee[KM201811417006] ; General Project of Scientific Research Project of the Beijing Education Committee[KM201611417015]
WOS研究方向Computer Science
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods
WOS记录号WOS:000566558900003
出版者INST ENGINEERING TECHNOLOGY-IET
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/15775
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Liang, Jun
作者单位1.Beijing Union Univ, Beijing Key Lab Informat Serv Engn, Beijing, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Li, Wei,Liang, Jun,Zhang, Yunquan,et al. Accelerated LiDAR data processing algorithm for self-driving cars on the heterogeneous computing platform[J]. IET COMPUTERS AND DIGITAL TECHNIQUES,2020,14(5):201-209.
APA Li, Wei,Liang, Jun,Zhang, Yunquan,Jia, Haipeng,Xiao, Lin,&Li, Qing.(2020).Accelerated LiDAR data processing algorithm for self-driving cars on the heterogeneous computing platform.IET COMPUTERS AND DIGITAL TECHNIQUES,14(5),201-209.
MLA Li, Wei,et al."Accelerated LiDAR data processing algorithm for self-driving cars on the heterogeneous computing platform".IET COMPUTERS AND DIGITAL TECHNIQUES 14.5(2020):201-209.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Wei]的文章
[Liang, Jun]的文章
[Zhang, Yunquan]的文章
百度学术
百度学术中相似的文章
[Li, Wei]的文章
[Liang, Jun]的文章
[Zhang, Yunquan]的文章
必应学术
必应学术中相似的文章
[Li, Wei]的文章
[Liang, Jun]的文章
[Zhang, Yunquan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。