Institute of Computing Technology, Chinese Academy IR
avtmNet:Adaptive Visual-Text Merging Network for Image Captioning | |
Song, Heng1,2,3; Zhu, Junwu1; Jiang, Yi1,4 | |
2020-06-01 | |
发表期刊 | COMPUTERS & ELECTRICAL ENGINEERING |
ISSN | 0045-7906 |
卷号 | 84页码:12 |
摘要 | Recently, researchers have made extensive research on the technology of automatically generating descriptions for an image. Various technologies for image captioning have been proposed, among which attention-based encoder-decoder framework achieved great success. Two different types of attention models are proposed to generate image captions respectively, i.e., model based visual attention that is good at describing details, and model based text attention that is good at comprehensive understanding. In order to integrate and make full use of visual information and text information to generate more accurate captions for images, in this paper, we firstly introduce a visual attention model to generate the visual information and a text attention model to form the text information respectively, and then propose an adaptive visual-text merging network(avtmNet). This merging network can effectively merge the visual information and text information, and automatically determine the proportion of both visual information and text information to generate the next caption word. Extensive experiments are performed on the datasets named COCO2014 and Flickr30K respectively, and show the effectiveness and superiority of our proposed approach. (C) 2020 Elsevier Ltd. All rights reserved. |
关键词 | Image captioning Computer Vision Natural Language Processing Attention Mechanism Neural networks |
DOI | 10.1016/j.compeleceng.2020.106630 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[61872313] ; Key Research Projects in Education Informatization in Jiangsu Province[20180012] ; Postgraduate Research and Practice Innovation Program of Jiangsu Province[KYCX18_2366] ; Yangzhou Science and Technology[YZ2018209] ; Yangzhou Science and Technology[YZ2019133] ; Yangzhou University Jiangdu HighEnd Equipment Engineering Technology Research Institute Open Project[YDJD201707] ; State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University[1907] |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Hardware & Architecture ; Computer Science, Interdisciplinary Applications ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000579053300009 |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/15736 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Jiang, Yi |
作者单位 | 1.Yangzhou Univ, Inst Informat Engn, Yangzhou, Jiangsu, Peoples R China 2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing, Peoples R China 3.Univ Chinese Acad Sci, Beijing, Peoples R China 4.Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai, Peoples R China |
推荐引用方式 GB/T 7714 | Song, Heng,Zhu, Junwu,Jiang, Yi. avtmNet:Adaptive Visual-Text Merging Network for Image Captioning[J]. COMPUTERS & ELECTRICAL ENGINEERING,2020,84:12. |
APA | Song, Heng,Zhu, Junwu,&Jiang, Yi.(2020).avtmNet:Adaptive Visual-Text Merging Network for Image Captioning.COMPUTERS & ELECTRICAL ENGINEERING,84,12. |
MLA | Song, Heng,et al."avtmNet:Adaptive Visual-Text Merging Network for Image Captioning".COMPUTERS & ELECTRICAL ENGINEERING 84(2020):12. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论