CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
avtmNet:Adaptive Visual-Text Merging Network for Image Captioning
Song, Heng1,2,3; Zhu, Junwu1; Jiang, Yi1,4
2020-06-01
发表期刊COMPUTERS & ELECTRICAL ENGINEERING
ISSN0045-7906
卷号84页码:12
摘要Recently, researchers have made extensive research on the technology of automatically generating descriptions for an image. Various technologies for image captioning have been proposed, among which attention-based encoder-decoder framework achieved great success. Two different types of attention models are proposed to generate image captions respectively, i.e., model based visual attention that is good at describing details, and model based text attention that is good at comprehensive understanding. In order to integrate and make full use of visual information and text information to generate more accurate captions for images, in this paper, we firstly introduce a visual attention model to generate the visual information and a text attention model to form the text information respectively, and then propose an adaptive visual-text merging network(avtmNet). This merging network can effectively merge the visual information and text information, and automatically determine the proportion of both visual information and text information to generate the next caption word. Extensive experiments are performed on the datasets named COCO2014 and Flickr30K respectively, and show the effectiveness and superiority of our proposed approach. (C) 2020 Elsevier Ltd. All rights reserved.
关键词Image captioning Computer Vision Natural Language Processing Attention Mechanism Neural networks
DOI10.1016/j.compeleceng.2020.106630
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61872313] ; Key Research Projects in Education Informatization in Jiangsu Province[20180012] ; Postgraduate Research and Practice Innovation Program of Jiangsu Province[KYCX18_2366] ; Yangzhou Science and Technology[YZ2018209] ; Yangzhou Science and Technology[YZ2019133] ; Yangzhou University Jiangdu HighEnd Equipment Engineering Technology Research Institute Open Project[YDJD201707] ; State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University[1907]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Interdisciplinary Applications ; Engineering, Electrical & Electronic
WOS记录号WOS:000579053300009
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
被引频次:8[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/15736
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Jiang, Yi
作者单位1.Yangzhou Univ, Inst Informat Engn, Yangzhou, Jiangsu, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing, Peoples R China
3.Univ Chinese Acad Sci, Beijing, Peoples R China
4.Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Song, Heng,Zhu, Junwu,Jiang, Yi. avtmNet:Adaptive Visual-Text Merging Network for Image Captioning[J]. COMPUTERS & ELECTRICAL ENGINEERING,2020,84:12.
APA Song, Heng,Zhu, Junwu,&Jiang, Yi.(2020).avtmNet:Adaptive Visual-Text Merging Network for Image Captioning.COMPUTERS & ELECTRICAL ENGINEERING,84,12.
MLA Song, Heng,et al."avtmNet:Adaptive Visual-Text Merging Network for Image Captioning".COMPUTERS & ELECTRICAL ENGINEERING 84(2020):12.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Song, Heng]的文章
[Zhu, Junwu]的文章
[Jiang, Yi]的文章
百度学术
百度学术中相似的文章
[Song, Heng]的文章
[Zhu, Junwu]的文章
[Jiang, Yi]的文章
必应学术
必应学术中相似的文章
[Song, Heng]的文章
[Zhu, Junwu]的文章
[Jiang, Yi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。