CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Two-stream deep sparse network for accurate and efficient image restoration
Wang, Shuhui1; Hu, Ling1,2; Li, Liang1; Zhang, Weigang3; Huang, Qingming1,2,4
2020-11-01
发表期刊COMPUTER VISION AND IMAGE UNDERSTANDING
ISSN1077-3142
卷号200页码:11
摘要Deep convolutional neural network (CNN) has achieved great success in image restoration. However, previous methods ignore the complementarity between low-level and high-level features, thereby leading to limited image reconstruction quality. In this paper, we propose a two-stream sparse network (TSSN) to explicitly learn shallow and deep features to enforce their respective contribution to image restoration. The shallow stream learns shallow features (e.g., texture edges), and the deep stream learns deep features (e.g., salient semantics). In each stream, sparse residual block (SRB) is proposed to efficiently aggregate hierarchical features by constructing sparse connections among layers in the local block. Spatial-wise and channel-wise attention are used to fuse the shallow and deep stream which recalibrates features by weight assignment in both spatial and channel dimensions. A novel loss function called Softmax-L-1 loss is proposed to increase penalties of pixels that have large L-1 loss (i.e., hard pixels). TSSN is evaluated with three representative IR applications, i.e., single image super-resolution, image denoising and JPEG deblocking. Extensive experiments demonstrate that TSSN outperforms most of state-of-the-art methods on benchmark datasets on both quantitative metric and visual quality.
关键词Two-stream sparse network Image restoration Image super-resolution Image denoising
DOI10.1016/j.cviu.2020.103029
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2018AAA0102003] ; National Natural Science Foundation of China[61672497] ; National Natural Science Foundation of China[61771457] ; National Natural Science Foundation of China[61836002] ; National Natural Science Foundation of China[61620106009] ; National Natural Science Foundation of China[U1636214] ; National Natural Science Foundation of China[61931008] ; Key Research Program of Frontier Sciences of CAS[QYZDJ-SSW-SYS013]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000579188100001
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/15709
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Liang
作者单位1.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100049, Peoples R China
3.Harbin Inst Technol, Weihai 264200, Peoples R China
4.Univ Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing 101408, Peoples R China
推荐引用方式
GB/T 7714
Wang, Shuhui,Hu, Ling,Li, Liang,et al. Two-stream deep sparse network for accurate and efficient image restoration[J]. COMPUTER VISION AND IMAGE UNDERSTANDING,2020,200:11.
APA Wang, Shuhui,Hu, Ling,Li, Liang,Zhang, Weigang,&Huang, Qingming.(2020).Two-stream deep sparse network for accurate and efficient image restoration.COMPUTER VISION AND IMAGE UNDERSTANDING,200,11.
MLA Wang, Shuhui,et al."Two-stream deep sparse network for accurate and efficient image restoration".COMPUTER VISION AND IMAGE UNDERSTANDING 200(2020):11.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Shuhui]的文章
[Hu, Ling]的文章
[Li, Liang]的文章
百度学术
百度学术中相似的文章
[Wang, Shuhui]的文章
[Hu, Ling]的文章
[Li, Liang]的文章
必应学术
必应学术中相似的文章
[Wang, Shuhui]的文章
[Hu, Ling]的文章
[Li, Liang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。