CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Live-SIMBA: an ImageJ plug-in for the universal and accelerated single molecule-guided Bayesian localization super resolution microscopy (SIMBA) method
Li, Hongjia1,2; Xu, Fan3; Gao, Shan1,2; Zhang, Mingshu4; Xue, Fudong4; Xu, Pingyong2,4,5; Zhang, Fa1,2
2020-10-01
发表期刊BIOMEDICAL OPTICS EXPRESS
ISSN2156-7085
卷号11期号:10页码:5842-5859
摘要Live-cell super-resolution fluorescence microscopy techniques allow biologists to observe subcellular structures, interactions and dynamics at the nanoscale level. Among of them, single molecule-guided Bayesian localization super resolution microscopy (SIMBA) and its derivatives produce an appropriate 50 nm spatial resolution and a 0.1-2s temporal resolution in living cells with simple off-the-shelf total internal reflection fluorescence (TIRF) equipment. However, SIMBA and its derivatives are limited by the requirement for dual-channel dataset or single-channel dataset with special design, the time-consuming calculation for extended field of view and the lack of real-time visualization tool. Here, we propose a universal and accelerated SIMBA ImageJ plug-in, Live-SIMBA, for time-series analysis in living cells. Live-SIMBA circumvents the requirement of dual-channel dataset using intensity-based sampling algorithm and improves the computing speed using multi-core parallel computing technique. Live-SIMBA also better resolves the weak signals inside the specimens with adjustable background estimation and distance-threshold filter. With improved fidelity on reconstructed structures, greatly accelerated computation, and real-time visualization, Live-SIMBA demonstrates its extended capabilities in live-cell super-resolution imaging. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
DOI10.1364/BOE.404820
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2017YFA0504702] ; National Key Research and Development Program of China[2017YFA0505300] ; National Key Research and Development Program of China[2017YFE0103900] ; National Natural Science Foundation of China[21778069] ; National Natural Science Foundation of China[31421002] ; National Natural Science Foundation of China[61672493] ; National Natural Science Foundation of China[61932018] ; National Natural Science Foundation of China[U1611261] ; National Natural Science Foundation of China[U1611263] ; Beijing Municipal Natural Science Foundation[L182053] ; Project of the National Laboratory of Biomacromolecules
WOS研究方向Biochemistry & Molecular Biology ; Optics ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Biochemical Research Methods ; Optics ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:000577572500033
出版者OPTICAL SOC AMER
引用统计
被引频次:8[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/15705
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Xu, Pingyong
作者单位1.Chinese Acad Sci, High Performance Comp Res Ctr, Inst Comp Technol, 6 Kexueyuan South Rd, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47907 USA
4.Chinese Acad Sci, Inst Biophys, Key Lab RNA Biol, Beijing 100101, Peoples R China
5.Chinese Acad Sci, CAS Ctr Excellence Biomacromol, Inst Biophys, Natl Lab Biomacromol, Beijing 100101, Peoples R China
推荐引用方式
GB/T 7714
Li, Hongjia,Xu, Fan,Gao, Shan,et al. Live-SIMBA: an ImageJ plug-in for the universal and accelerated single molecule-guided Bayesian localization super resolution microscopy (SIMBA) method[J]. BIOMEDICAL OPTICS EXPRESS,2020,11(10):5842-5859.
APA Li, Hongjia.,Xu, Fan.,Gao, Shan.,Zhang, Mingshu.,Xue, Fudong.,...&Zhang, Fa.(2020).Live-SIMBA: an ImageJ plug-in for the universal and accelerated single molecule-guided Bayesian localization super resolution microscopy (SIMBA) method.BIOMEDICAL OPTICS EXPRESS,11(10),5842-5859.
MLA Li, Hongjia,et al."Live-SIMBA: an ImageJ plug-in for the universal and accelerated single molecule-guided Bayesian localization super resolution microscopy (SIMBA) method".BIOMEDICAL OPTICS EXPRESS 11.10(2020):5842-5859.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Hongjia]的文章
[Xu, Fan]的文章
[Gao, Shan]的文章
百度学术
百度学术中相似的文章
[Li, Hongjia]的文章
[Xu, Fan]的文章
[Gao, Shan]的文章
必应学术
必应学术中相似的文章
[Li, Hongjia]的文章
[Xu, Fan]的文章
[Gao, Shan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。