CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A deep neural network compression algorithm based on knowledge transfer for edge devices
Chen, Yanming1; Li, Chao2; Gong, Luqi2; Wen, Xiang1; Zhang, Yiwen1; Shi, Weisong3
2020-11-01
发表期刊COMPUTER COMMUNICATIONS
ISSN0140-3664
卷号163页码:186-194
摘要The computation and storage capacity of the edge device are limited, which seriously restrict the application of deep neural network in the device. Toward to the intelligent application of the edge device, we introduce the deep neural network compression algorithm based on knowledge transfer, a three-stage pipeline: lightweight, multi-level knowledge transfer and pruning that reduce the network depth, parameter and operation complexity of the deep learning neural networks. We lighten the neural networks by using a global average pooling layer instead of a fully connected layer and replacing a standard convolution with separable convolutions. Next, the multi-level knowledge transfer minimizes the difference between the output of the "student network" and the "teacher network" in the middle and logits layer, increasing the supervised information when training the "student network". Lastly, we prune the network by cutting off the unimportant convolution kernels with a global iterative pruning strategy. The experiment results show that the proposed method improve the efficiency up to 30% than the knowledge distillation method in reducing the loss of classification performance. Benchmarked on GPU (Graphics Processing Unit) server, Raspberry Pi 3 and Cambricon-1A, the parameters of the compressed network after using our knowledge transfer and pruning method have achieved more than 49.5 times compression and the time efficiency of a single feedforward operation has been improved more than 3.2 times.
关键词Edge device Deep learning Neural network compression Knowledge transfer
DOI10.1016/j.comcom.2020.09.016
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61702487] ; National Natural Science Foundation of China[61802001]
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000579768300013
出版者ELSEVIER
引用统计
被引频次:8[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/15693
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Chao
作者单位1.Anhui Univ, Sch Comp Sci, Hefei, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
3.Wayne State Univ, Dept Comp Sci, Detroit, MI 48202 USA
推荐引用方式
GB/T 7714
Chen, Yanming,Li, Chao,Gong, Luqi,et al. A deep neural network compression algorithm based on knowledge transfer for edge devices[J]. COMPUTER COMMUNICATIONS,2020,163:186-194.
APA Chen, Yanming,Li, Chao,Gong, Luqi,Wen, Xiang,Zhang, Yiwen,&Shi, Weisong.(2020).A deep neural network compression algorithm based on knowledge transfer for edge devices.COMPUTER COMMUNICATIONS,163,186-194.
MLA Chen, Yanming,et al."A deep neural network compression algorithm based on knowledge transfer for edge devices".COMPUTER COMMUNICATIONS 163(2020):186-194.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, Yanming]的文章
[Li, Chao]的文章
[Gong, Luqi]的文章
百度学术
百度学术中相似的文章
[Chen, Yanming]的文章
[Li, Chao]的文章
[Gong, Luqi]的文章
必应学术
必应学术中相似的文章
[Chen, Yanming]的文章
[Li, Chao]的文章
[Gong, Luqi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。