CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
SHREC 2020: Classification in cryo-electron tomograms
Gubins, Ilja1; Chaillet, Marten L.2; van der Schot, Gijs2; Veltkamp, Remco C.1; Forster, Friedrich2; Hao, Yu3; Wan, Xiaohua3; Cui, Xuefeng4; Zhang, Fa3; Moebel, Emmanuel5; Wang, Xiao6; Kihara, Daisuke6,7; Zeng, Xiangrui8; Xu, Min8; Nguyen, Nguyen P.9; White, Tommi10; Bunyak, Filiz9
2020-10-01
发表期刊COMPUTERS & GRAPHICS-UK
ISSN0097-8493
卷号91页码:279-289
摘要Cryo-electron tomography (cryo-ET) is an imaging technique that allows us to three-dimensionally visualize both the structural details of macro-molecular assemblies under near-native conditions and its cellular context. Electrons strongly interact with biological samples, limiting electron dose. The latter limits the signal-to-noise ratio and hence resolution of an individual tomogram to about 50 (5 nm). Biological molecules can be obtained by averaging volumes, each depicting copies of the molecule, allowing for resolutions beyond 4 (0.4 nm). To this end, the ability to localize and classify components is crucial, but challenging due to the low signal-to-noise ratio. Computational innovation is key to mine biological information from cryo-electron tomography. To promote such innovation, we provide a novel simulated dataset to benchmark different methods of localization and classification of biological macromolecules in cryo-electron tomograms. Our publicly available dataset contains ten tomographic reconstructions of simulated cell-like volumes. Each volume contains twelve different types of complexes, varying in size, function and structure. In this paper, we have evaluated seven different methods of finding and classifying proteins. Six research groups present results obtained with learning-based methods and trained on the simulated dataset, as well as a baseline template matching, a traditional method widely used in cryo-ET research. We find that method performance correlates with particle size, especially noticeable for template matching which performance degrades rapidly as the size decreases. We learn that neural networks can achieve significantly better localization and classification performance, in particular convolutional networks with focus on high-resolution details such as those based on U-Net architecture. (C) 2020 Elsevier Ltd. All rights reserved.
关键词Cryo-electron tomography Computer vision Pattern recognition Protein classification Benchmark
DOI10.1016/j.cag.2020.07.010
收录类别SCI
语种英语
资助项目European Research Council under the European Union[724425 - BENDER] ; Nederlandse Organisatie voor Wetenschappelijke Onderzoek[Vici 724.016.001] ; Nederlandse Organisatie voor Wetenschappelijke Onderzoek[741.018.201]
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号WOS:000577434300023
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
被引频次:22[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/15679
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Gubins, Ilja
作者单位1.Univ Utrecht, Dept Informat & Comp Sci, Utrecht, Netherlands
2.Univ Utrecht, Dept Chem, Utrecht, Netherlands
3.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
4.Shandong Univ, Sch Comp Sci & Technol, Jinan, Peoples R China
5.Inria Rennes Bretagne Atlantique, Rennes, France
6.Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA
7.Purdue Univ, Computat Biol Dept, W Lafayette, IN 47907 USA
8.Carnegie Mellon Univ, Computat Biol Dept, Pittsburgh, PA 15213 USA
9.Univ Missouri, Dept Elect Engn & Comp Sci, Columbia, MO 65211 USA
10.Univ Missouri, Dept Biochem, Columbia, MO USA
推荐引用方式
GB/T 7714
Gubins, Ilja,Chaillet, Marten L.,van der Schot, Gijs,et al. SHREC 2020: Classification in cryo-electron tomograms[J]. COMPUTERS & GRAPHICS-UK,2020,91:279-289.
APA Gubins, Ilja.,Chaillet, Marten L..,van der Schot, Gijs.,Veltkamp, Remco C..,Forster, Friedrich.,...&Bunyak, Filiz.(2020).SHREC 2020: Classification in cryo-electron tomograms.COMPUTERS & GRAPHICS-UK,91,279-289.
MLA Gubins, Ilja,et al."SHREC 2020: Classification in cryo-electron tomograms".COMPUTERS & GRAPHICS-UK 91(2020):279-289.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gubins, Ilja]的文章
[Chaillet, Marten L.]的文章
[van der Schot, Gijs]的文章
百度学术
百度学术中相似的文章
[Gubins, Ilja]的文章
[Chaillet, Marten L.]的文章
[van der Schot, Gijs]的文章
必应学术
必应学术中相似的文章
[Gubins, Ilja]的文章
[Chaillet, Marten L.]的文章
[van der Schot, Gijs]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。