CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Distributed machine learning load balancing strategy in cloud computing services
Li, Mingwei1,2; Zhang, Jilin1,2,3; Wan, Jian1,2,4; Ren, Yongjian1,2; Zhou, Li1,2; Wu, Baofu1,2; Yang, Rui1,2; Wang, Jue5
2020-11-01
发表期刊WIRELESS NETWORKS
ISSN1022-0038
卷号26期号:8页码:5517-5533
摘要Mobile service computing is a new cloud computing model that provides various cloud services for mobile intelligent terminal users through mobile internet access. The quality of service is an essential problem faced by mobile service computing. In this paper, we demonstrate a series of research studies on how to accelerate the training of a distributed machine learning (ML) model based on cloud service. Distributed ML has become the mainstream way of today's ML models training. In traditional distributed ML based on bulk synchronous parallel, the temporary slowdown of any node in the cluster will delay the calculation of other nodes because of the frequent occurrence of synchronous barriers, resulting in overall performance degradation. Our paper proposes a load balancing strategy named adaptive fast reassignment (AdaptFR). Based on this, we built a distributed parallel computing model called adaptive-dynamic synchronous parallel (A-DSP). A-DSP uses a more relaxed synchronization model to reduce the performance consumption caused by synchronous operations while ensuring the consistency of the model. At the same time, A-DSP also implements the AdaptFR load balancing strategy, which addresses the straggler problem caused by the performance difference between nodes under the premise of ensuring the accuracy of the model. The experiments show that A-DSP can effectively improve the training speed while ensuring the accuracy of the model in the distributed ML model training.
关键词Mobile service computing Cloud service Distributed machine learning Load balancing Adaptive fast reassignment
DOI10.1007/s11276-019-02042-2
收录类别SCI
语种英语
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000574649300003
出版者SPRINGER
引用统计
被引频次:8[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/15616
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wan, Jian
作者单位1.Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou 310018, Peoples R China
2.Minist Educ, Key Lab Complex Syst Modeling & Simulat, Hangzhou 310018, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
4.Zhejiang Univ Sci & Technol, Sch Informat & Elect Engn, Hangzhou, Zhejiang, Peoples R China
5.Chinese Acad Sci, Supercomp Ctr, Comp Network Informat Ctr, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Li, Mingwei,Zhang, Jilin,Wan, Jian,et al. Distributed machine learning load balancing strategy in cloud computing services[J]. WIRELESS NETWORKS,2020,26(8):5517-5533.
APA Li, Mingwei.,Zhang, Jilin.,Wan, Jian.,Ren, Yongjian.,Zhou, Li.,...&Wang, Jue.(2020).Distributed machine learning load balancing strategy in cloud computing services.WIRELESS NETWORKS,26(8),5517-5533.
MLA Li, Mingwei,et al."Distributed machine learning load balancing strategy in cloud computing services".WIRELESS NETWORKS 26.8(2020):5517-5533.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Mingwei]的文章
[Zhang, Jilin]的文章
[Wan, Jian]的文章
百度学术
百度学术中相似的文章
[Li, Mingwei]的文章
[Zhang, Jilin]的文章
[Wan, Jian]的文章
必应学术
必应学术中相似的文章
[Li, Mingwei]的文章
[Zhang, Jilin]的文章
[Wan, Jian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。