Institute of Computing Technology, Chinese Academy IR
Knowledge-guided unsupervised rhetorical parsing for text summarization | |
Hou, Shengluan1,2; Lu, Ruqian1,3,4 | |
2020-12-01 | |
发表期刊 | INFORMATION SYSTEMS |
ISSN | 0306-4379 |
卷号 | 94页码:12 |
摘要 | Automatic text summarization (ATS) has recently achieved impressive performance thanks to recent advances in deep learning and the availability of large-scale corpora. However, there is still no guarantee that the generated summaries are grammatical, concise, and convey all salient information as the original documents have. To make the summarization results more faithful, this paper presents an unsupervised approach that combines rhetorical structure theory, deep neural model, and domain knowledge concern for ATS. This architecture mainly contains three components: domain knowledge base construction based on representation learning, the attentional encoder-decoder model for rhetorical parsing, and subroutine-based model for text summarization. Domain knowledge can be effectively used for unsupervised rhetorical parsing thus rhetorical structure trees for each document can be derived. In the unsupervised rhetorical parsing module, the idea of translation was adopted to alleviate the problem of data scarcity. The subroutine-based summarization model purely depends on the derived rhetorical structure trees and can generate content-balanced results. To evaluate the summary results without golden standard, we proposed an unsupervised evaluation metric, whose hyper-parameters were tuned by supervised learning. Experimental results show that, on a large-scale Chinese dataset, our proposed approach can obtain comparable performances compared with existing methods. (C) 2020 Elsevier Ltd. All rights reserved. |
关键词 | Automatic text summarization Rhetorical structure theory Domain knowledge base Attentional encoder-decoder Natural language processing |
DOI | 10.1016/j.is.2020.101615 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key Research and Development Program of China[2016YFB1000902] ; National Natural Science Foundation of China[61232015] ; National Natural Science Foundation of China[61472412] ; National Natural Science Foundation of China[61621003] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Information Systems |
WOS记录号 | WOS:000567083300010 |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/15506 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Hou, Shengluan |
作者单位 | 1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 3.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China 4.Chinese Acad Sci, Key Lab MADIS, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Hou, Shengluan,Lu, Ruqian. Knowledge-guided unsupervised rhetorical parsing for text summarization[J]. INFORMATION SYSTEMS,2020,94:12. |
APA | Hou, Shengluan,&Lu, Ruqian.(2020).Knowledge-guided unsupervised rhetorical parsing for text summarization.INFORMATION SYSTEMS,94,12. |
MLA | Hou, Shengluan,et al."Knowledge-guided unsupervised rhetorical parsing for text summarization".INFORMATION SYSTEMS 94(2020):12. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Hou, Shengluan]的文章 |
[Lu, Ruqian]的文章 |
百度学术 |
百度学术中相似的文章 |
[Hou, Shengluan]的文章 |
[Lu, Ruqian]的文章 |
必应学术 |
必应学术中相似的文章 |
[Hou, Shengluan]的文章 |
[Lu, Ruqian]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论