CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
MultiPAD: A Multivariant Partition-Based Method for Audio Adversarial Examples Detection
Guo, Qingli1,2; Ye, Jing1,2; Hu, Yu1,2; Zhang, Guohe3; Li, Xiaowei1,2; Li, Huawei1,2,4
2020
发表期刊IEEE ACCESS
ISSN2169-3536
卷号8页码:63368-63380
摘要Adversarial examples have been highlighted as a serious threat to various deep neural networks. The defense against adversarial examples is extremely urgent. This paper proposes an efficient multivariant partition based method to detect audio adversarial examples. Various partition strategies are exploited to obtain sufficient features that can help us to distinguish audio adversarial examples from clean samples. Using these features, a classification model is trained to detect audio adversarial examples. These features are also combined and compared to analyze their detection performance. The performance is evaluated on the Mozilla Common Voice dataset and the LibriSpeech dataset. Experimental results based on Mozilla Common Voice dataset show that the detection accuracy and AUC value of the model achieve 94.8 & x0025; and 0.97 respectively, which are 13.5 & x0025; and 0.08 higher than using the features of the existing work. Experimental results based on LibriSpeech dataset show that the detection accuracy and AUC value of the model achieve 100 & x0025; and 1.00 respectively, which are 10 & x0025; and 0.10 higher than the existing work.
关键词Speech recognition Feature extraction Decoding Mathematical model Acoustics Psychoacoustic models Radio frequency Adversarial examples audio detection multivariant partition
DOI10.1109/ACCESS.2020.2985231
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China (NSFC)[61532017] ; National Natural Science Foundation of China (NSFC)[61704174] ; National Natural Science Foundation of China (NSFC)[61432017] ; National Natural Science Foundation of China (NSFC)[61521092]
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000530832200063
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:7[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/15356
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Ye, Jing; Li, Xiaowei
作者单位1.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Xi An Jiao Tong Univ, Sch Microelect, Xian 710049, Peoples R China
4.Peng Cheng Lab, Shenzhen 518052, Peoples R China
推荐引用方式
GB/T 7714
Guo, Qingli,Ye, Jing,Hu, Yu,et al. MultiPAD: A Multivariant Partition-Based Method for Audio Adversarial Examples Detection[J]. IEEE ACCESS,2020,8:63368-63380.
APA Guo, Qingli,Ye, Jing,Hu, Yu,Zhang, Guohe,Li, Xiaowei,&Li, Huawei.(2020).MultiPAD: A Multivariant Partition-Based Method for Audio Adversarial Examples Detection.IEEE ACCESS,8,63368-63380.
MLA Guo, Qingli,et al."MultiPAD: A Multivariant Partition-Based Method for Audio Adversarial Examples Detection".IEEE ACCESS 8(2020):63368-63380.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Guo, Qingli]的文章
[Ye, Jing]的文章
[Hu, Yu]的文章
百度学术
百度学术中相似的文章
[Guo, Qingli]的文章
[Ye, Jing]的文章
[Hu, Yu]的文章
必应学术
必应学术中相似的文章
[Guo, Qingli]的文章
[Ye, Jing]的文章
[Hu, Yu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。