CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Sequential Recommendation via Cross-Domain Novelty Seeking Trait Mining
Zhuang, Fu-Zhen1,2; Zhou, Ying-Min1,2; Ying, Hao-Chao3; Zhang, Fu-Zheng4; Ao, Xiang1,2; Xie, Xing5; He, Qing1,2; Xiong, Hui6
2020-03-01
发表期刊JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
ISSN1000-9000
卷号35期号:2页码:305-319
摘要Transfer learning has attracted a large amount of interest and research in last decades, and some effort has been made to build more precise recommendation systems. Most previous transfer recommendation systems assume that the target domain shares the same/similar rating patterns with the auxiliary source domain, which is used to improve the recommendation performance. However, almost all existing transfer learning work does not consider the characteristics of sequential data. In this paper, we study the new cross-domain recommendation scenario by mining novelty-seeking trait. Recent studies in psychology suggest that novelty-seeking trait is highly related to consumer behavior, which has a profound business impact on online recommendation. Previous work performed on only one single target domain may not fully characterize users' novelty-seeking trait well due to the data scarcity and sparsity, leading to the poor recommendation performance. Along this line, we propose a new cross-domain novelty-seeking trait mining model (CDNST for short) to improve the sequential recommendation performance by transferring the knowledge from auxiliary source domain. We conduct systematic experiments on three domain datasets crawled from Douban to demonstrate the effectiveness of our proposed model. Moreover, we analyze the directed influence of the temporal property at the source and target domains in detail.
关键词sequential recommendation novelty-seeking trait transfer learning
DOI10.1007/s11390-020-9945-z
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2018YFB1004300] ; National Natural Science Foundation of China[U1836206] ; National Natural Science Foundation of China[U1811461] ; National Natural Science Foundation of China[61773361] ; Project of Youth Innovation Promotion Association of Chinese Academy of Sciences[2017146]
WOS研究方向Computer Science
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Software Engineering
WOS记录号WOS:000534804000008
出版者SCIENCE PRESS
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/15341
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Ying, Hao-Chao
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Zhejiang Univ, Sch Med, Sch Publ Hlth, Hangzhou 310027, Peoples R China
4.Meituan Dianping Grp, Beijing 100102, Peoples R China
5.Microsoft Res Asia, Beijing 100080, Peoples R China
6.Rutgers State Univ, Dept Management Sci & Informat Syst, Newark, NJ 07102 USA
推荐引用方式
GB/T 7714
Zhuang, Fu-Zhen,Zhou, Ying-Min,Ying, Hao-Chao,et al. Sequential Recommendation via Cross-Domain Novelty Seeking Trait Mining[J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,2020,35(2):305-319.
APA Zhuang, Fu-Zhen.,Zhou, Ying-Min.,Ying, Hao-Chao.,Zhang, Fu-Zheng.,Ao, Xiang.,...&Xiong, Hui.(2020).Sequential Recommendation via Cross-Domain Novelty Seeking Trait Mining.JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,35(2),305-319.
MLA Zhuang, Fu-Zhen,et al."Sequential Recommendation via Cross-Domain Novelty Seeking Trait Mining".JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 35.2(2020):305-319.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhuang, Fu-Zhen]的文章
[Zhou, Ying-Min]的文章
[Ying, Hao-Chao]的文章
百度学术
百度学术中相似的文章
[Zhuang, Fu-Zhen]的文章
[Zhou, Ying-Min]的文章
[Ying, Hao-Chao]的文章
必应学术
必应学术中相似的文章
[Zhuang, Fu-Zhen]的文章
[Zhou, Ying-Min]的文章
[Ying, Hao-Chao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。