Institute of Computing Technology, Chinese Academy IR
Sequential Recommendation via Cross-Domain Novelty Seeking Trait Mining | |
Zhuang, Fu-Zhen1,2; Zhou, Ying-Min1,2; Ying, Hao-Chao3; Zhang, Fu-Zheng4; Ao, Xiang1,2; Xie, Xing5; He, Qing1,2; Xiong, Hui6 | |
2020-03-01 | |
发表期刊 | JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY |
ISSN | 1000-9000 |
卷号 | 35期号:2页码:305-319 |
摘要 | Transfer learning has attracted a large amount of interest and research in last decades, and some effort has been made to build more precise recommendation systems. Most previous transfer recommendation systems assume that the target domain shares the same/similar rating patterns with the auxiliary source domain, which is used to improve the recommendation performance. However, almost all existing transfer learning work does not consider the characteristics of sequential data. In this paper, we study the new cross-domain recommendation scenario by mining novelty-seeking trait. Recent studies in psychology suggest that novelty-seeking trait is highly related to consumer behavior, which has a profound business impact on online recommendation. Previous work performed on only one single target domain may not fully characterize users' novelty-seeking trait well due to the data scarcity and sparsity, leading to the poor recommendation performance. Along this line, we propose a new cross-domain novelty-seeking trait mining model (CDNST for short) to improve the sequential recommendation performance by transferring the knowledge from auxiliary source domain. We conduct systematic experiments on three domain datasets crawled from Douban to demonstrate the effectiveness of our proposed model. Moreover, we analyze the directed influence of the temporal property at the source and target domains in detail. |
关键词 | sequential recommendation novelty-seeking trait transfer learning |
DOI | 10.1007/s11390-020-9945-z |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key Research and Development Program of China[2018YFB1004300] ; National Natural Science Foundation of China[U1836206] ; National Natural Science Foundation of China[U1811461] ; National Natural Science Foundation of China[61773361] ; Project of Youth Innovation Promotion Association of Chinese Academy of Sciences[2017146] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Hardware & Architecture ; Computer Science, Software Engineering |
WOS记录号 | WOS:000534804000008 |
出版者 | SCIENCE PRESS |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/15341 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Ying, Hao-Chao |
作者单位 | 1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 3.Zhejiang Univ, Sch Med, Sch Publ Hlth, Hangzhou 310027, Peoples R China 4.Meituan Dianping Grp, Beijing 100102, Peoples R China 5.Microsoft Res Asia, Beijing 100080, Peoples R China 6.Rutgers State Univ, Dept Management Sci & Informat Syst, Newark, NJ 07102 USA |
推荐引用方式 GB/T 7714 | Zhuang, Fu-Zhen,Zhou, Ying-Min,Ying, Hao-Chao,et al. Sequential Recommendation via Cross-Domain Novelty Seeking Trait Mining[J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,2020,35(2):305-319. |
APA | Zhuang, Fu-Zhen.,Zhou, Ying-Min.,Ying, Hao-Chao.,Zhang, Fu-Zheng.,Ao, Xiang.,...&Xiong, Hui.(2020).Sequential Recommendation via Cross-Domain Novelty Seeking Trait Mining.JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,35(2),305-319. |
MLA | Zhuang, Fu-Zhen,et al."Sequential Recommendation via Cross-Domain Novelty Seeking Trait Mining".JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 35.2(2020):305-319. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论