CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A Deep Learning-Based Framework for Intersectional Traffic Simulation and Editing
Bi, Huikun1,2,3; Mao, Tianlu2; Wang, Zhaoqi2; Deng, Zhigang4
2020-07-01
发表期刊IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
ISSN1077-2626
卷号26期号:7页码:2335-2348
摘要Most of existing traffic simulation methods have been focused on simulating vehicles on freeways or city-scale urban networks. However, relatively little research has been done to simulate intersectional traffic to date despite its broad potential applications. In this paper, we propose a novel deep learning-based framework to simulate and edit intersectional traffic. Specifically, based on an in-house collected intersectional traffic dataset, we employ the combination of convolution network (CNN) and recurrent network (RNN) to learn the patterns of vehicle trajectories in intersectional traffic. Besides simulating novel intersectional traffic, our method can be used to edit existing intersectional traffic. Through many experiments as well as comparative user studies, we demonstrate that the results by our method are visually indistinguishable from ground truth, and our method can outperform existing methods.
关键词Trajectory Solid modeling Computational modeling Vehicle dynamics Traffic control Data models Deep learning Traffic simulation crowd simulation data-driven deep learning intersectional traffic
DOI10.1109/TVCG.2018.2889834
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2017YFC0804900] ; National Natural Science Foundation of China[61532002] ; 13th Five-Year Common Technology pre Research Program[41402050301-170441402065] ; Science and Technology Mobilization Program of Dongguan[KZ2017-06] ; US NSF[IIS 1524782] ; CSC Fellowship
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号WOS:000542933100001
出版者IEEE COMPUTER SOC
引用统计
被引频次:11[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/15133
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Deng, Zhigang
作者单位1.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
2.Chinese Acad Sci, Beijing Key Lab Mobile Comp & Pervas Device, Inst Comp Technol, Beijing 100190, Peoples R China
3.Univ Houston, Comp Graph & Interact Media Lab, Houston, TX 77204 USA
4.Univ Houston, Comp Sci Dept, Houston, TX 77004 USA
推荐引用方式
GB/T 7714
Bi, Huikun,Mao, Tianlu,Wang, Zhaoqi,et al. A Deep Learning-Based Framework for Intersectional Traffic Simulation and Editing[J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,2020,26(7):2335-2348.
APA Bi, Huikun,Mao, Tianlu,Wang, Zhaoqi,&Deng, Zhigang.(2020).A Deep Learning-Based Framework for Intersectional Traffic Simulation and Editing.IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,26(7),2335-2348.
MLA Bi, Huikun,et al."A Deep Learning-Based Framework for Intersectional Traffic Simulation and Editing".IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 26.7(2020):2335-2348.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bi, Huikun]的文章
[Mao, Tianlu]的文章
[Wang, Zhaoqi]的文章
百度学术
百度学术中相似的文章
[Bi, Huikun]的文章
[Mao, Tianlu]的文章
[Wang, Zhaoqi]的文章
必应学术
必应学术中相似的文章
[Bi, Huikun]的文章
[Mao, Tianlu]的文章
[Wang, Zhaoqi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。