CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Adaptive Kalman filtering-based pedestrian navigation algorithm for smartphones
Yu, Chen1; Luo, Haiyong2; Fang, Zhao1; Qu, Wang1; Shao, Wenhua1
2020-05-01
发表期刊INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS
ISSN1729-8814
卷号17期号:3页码:14
摘要Pedestrian navigation with daily smart devices has become a vital issue over the past few years and the accurate heading estimation plays an essential role in it. Compared to the pedestrian dead reckoning (PDR) based solutions, this article constructs a scalable error model based on the inertial navigation system and proposes an adaptive heading estimation algorithm with a novel method of relative static magnetic field detection. To mitigate the impact of magnetic fluctuation, the proposed algorithm applies a two-way Kalman filter process. Firstly, it achieves the historical states with the optimal smoothing algorithm. Secondly, it adjusts the noise parameters adaptively to reestimate current attitudes. Different from the pedestrian dead reckoning-based solution, the error model system in this article contains more state information, which means it is more sensitive and scalable. Moreover, several experiments were conducted, and the experimental results demonstrate that the proposed heading estimation algorithm obtains better performance than previous approaches and our system outperforms the PDR system in terms of flexibility and accuracy.
关键词Pedestrian navigation error model system inertial sensors integration magnetic field heading estimation
DOI10.1177/1729881420930934
收录类别SCI
语种英语
资助项目National Key Research and Development Program[2019YFC1511400] ; Action Plan Project of the Beijing University of Posts and Telecommunications - Fundamental Research Funds for the Central Universities[2019XD-A06] ; Special Project for Youth Research and Innovation, Beijing University of Posts and Telecommunications ; Fundamental Research Funds for the Central Universities[2019PTB-011] ; National Natural Science Foundation of China[61872046] ; National Natural Science Foundation of China[61761038] ; Beijing Natural Science Foundation[L192004] ; Haidian Original Innovation[L192004] ; Key Research and Development Project from Hebei Province[19210404D] ; Science and Technology Plan Project of Inner Mongolia Autonomous Regio[2019GG328] ; Open Project of the Beijing Key Laboratory of Mobile Computing and Pervasive Device
WOS研究方向Robotics
WOS类目Robotics
WOS记录号WOS:000544697500001
出版者SAGE PUBLICATIONS INC
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/15086
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Yu, Chen
作者单位1.Beijing Univ Posts & Telecommun, Beijing 100876, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Yu, Chen,Luo, Haiyong,Fang, Zhao,et al. Adaptive Kalman filtering-based pedestrian navigation algorithm for smartphones[J]. INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS,2020,17(3):14.
APA Yu, Chen,Luo, Haiyong,Fang, Zhao,Qu, Wang,&Shao, Wenhua.(2020).Adaptive Kalman filtering-based pedestrian navigation algorithm for smartphones.INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS,17(3),14.
MLA Yu, Chen,et al."Adaptive Kalman filtering-based pedestrian navigation algorithm for smartphones".INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS 17.3(2020):14.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yu, Chen]的文章
[Luo, Haiyong]的文章
[Fang, Zhao]的文章
百度学术
百度学术中相似的文章
[Yu, Chen]的文章
[Luo, Haiyong]的文章
[Fang, Zhao]的文章
必应学术
必应学术中相似的文章
[Yu, Chen]的文章
[Luo, Haiyong]的文章
[Fang, Zhao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。