CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Towards privacy preserving social recommendation under personalized privacy settings
Meng, Xuying1; Wang, Suhang2; Shu, Kai2; Li, Jundong2; Chen, Bo3; Liu, Huan2; Zhang, Yujun1,4
2019-11-01
发表期刊WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS
ISSN1386-145X
卷号22期号:6页码:2853-2881
摘要Privacy leakage is an important issue for social relationships-based recommender systems (i.e., social recommendation). Existing privacy preserving social recommendation approaches usually allow the recommender to fully control users' information. This may be problematic since the recommender itself may be untrusted, leading to serious privacy leakage. Besides, building social relationships requires sharing interests as well as other private information, which may lead to more privacy leakage. Although sometimes users are allowed to hide their sensitive private data using personalized privacy settings, the data being shared can still be abused by the adversaries to infer sensitive private information. Supporting social recommendation with least privacy leakage to untrusted recommender and other users (i.e., friends) is an important yet challenging problem. In this paper, we aim to achieve privacy-preserving social recommendation under personalized privacy settings. We propose PrivSR, a novel privacy-preserving social recommendation framework, in which user can model user feedbacks and social relationships privately. Meanwhile, by allocating different noise magnitudes to personalized sensitive and non-sensitive feedbacks, we can protect users' privacy against untrusted recommender and friends. Theoretical analysis and experimental evaluation on real-world datasets demonstrate that our framework can protect users' privacy while being able to retain effectiveness of the underlying recommender system.
关键词Differential privacy Social recommendation Ranking Personalized privacy settings
DOI10.1007/s11280-018-0620-z
收录类别SCI
语种英语
资助项目National Science Foundation of China[61672500] ; National Science Foundation of China[61572474] ; Program of International ST Cooperation[2016YFE0121500] ; National Science Foundation (NSF)[1614576] ; Office of Naval Research (ONR)[N00014-16-1-2257]
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering
WOS记录号WOS:000504322400026
出版者SPRINGER
引用统计
被引频次:12[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/14983
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhang, Yujun
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
2.Arizona State Univ, Dept Comp Sci, Tempe, AZ 85287 USA
3.Michigan Technol Univ, Dept Comp Sci, Houghton, MI 49931 USA
4.Univ Chinese Acad Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Meng, Xuying,Wang, Suhang,Shu, Kai,et al. Towards privacy preserving social recommendation under personalized privacy settings[J]. WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS,2019,22(6):2853-2881.
APA Meng, Xuying.,Wang, Suhang.,Shu, Kai.,Li, Jundong.,Chen, Bo.,...&Zhang, Yujun.(2019).Towards privacy preserving social recommendation under personalized privacy settings.WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS,22(6),2853-2881.
MLA Meng, Xuying,et al."Towards privacy preserving social recommendation under personalized privacy settings".WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS 22.6(2019):2853-2881.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Meng, Xuying]的文章
[Wang, Suhang]的文章
[Shu, Kai]的文章
百度学术
百度学术中相似的文章
[Meng, Xuying]的文章
[Wang, Suhang]的文章
[Shu, Kai]的文章
必应学术
必应学术中相似的文章
[Meng, Xuying]的文章
[Wang, Suhang]的文章
[Shu, Kai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。