Institute of Computing Technology, Chinese Academy IR
DNNTune: Automatic Benchmarking DNN Models for Mobile-cloud Computing | |
Xia, Chunwei1,2; Zhao, Jiacheng1,2; Cui, Huimin1,2; Feng, Xiaobing1,2; Xue, Jingling3 | |
2019-12-01 | |
发表期刊 | ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION |
ISSN | 1544-3566 |
卷号 | 16期号:4页码:26 |
摘要 | Deep Neural Networks (DNNs) are now increasingly adopted in a variety of Artificial Intelligence (AI) applications. Meantime, more and more DNNs are moving from cloud to the mobile devices, as emerging AI chips are integrated into mobiles. Therefore, the DNN models can be deployed in the cloud, on the mobile devices, or even mobile-cloud coordinate processing, making it a big challenge to select an optimal deployment strategy under specific objectives. This article proposes a DNN tuning framework, i.e., DNNTune, that can provide layer-wise behavior analysis across a number of platforms. Using DNNTune, this article further selects 13 representative DNN models, including CNN, LSTM, and MLP, and three mobile devices ranging from low-end to high-end, and two AI accelerator chips to characterize the DNN models on these devices to further assist users finding opportunities for mobile-cloud coordinate computing. Our experimental results demonstrate that DNNTune can find a coordinated deployment achieving up to 1.66x speedup and 15% energy saving comparing with mobile-only and cloud-only deployment. |
关键词 | DNN mobile-cloud computing heterogeneous computing |
DOI | 10.1145/3368305 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key R&D Program of China[2016YFB1000402] ; National Natural Science Foundation of China[61802368] ; National Natural Science Foundation of China[61521092] ; National Natural Science Foundation of China[61432016] ; National Natural Science Foundation of China[61432018] ; National Natural Science Foundation of China[61332009] ; National Natural Science Foundation of China[61702485] ; National Natural Science Foundation of China[61872043] ; CCF-Tencent Open Research Fund ; Australian Research Council[RG171010] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods |
WOS记录号 | WOS:000504657400016 |
出版者 | ASSOC COMPUTING MACHINERY |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/14981 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Zhao, Jiacheng |
作者单位 | 1.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, 6 Kexueyuan South Rd Zhongguancun, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Sch Comp Sci & Technol, 19 A Yuquan Rd, Beijing 100049, Peoples R China 3.Univ New South Wales, Sch Comp Sci & Engn, Gate 14 Barker St, Sydney, NSW 2052, Australia |
推荐引用方式 GB/T 7714 | Xia, Chunwei,Zhao, Jiacheng,Cui, Huimin,et al. DNNTune: Automatic Benchmarking DNN Models for Mobile-cloud Computing[J]. ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION,2019,16(4):26. |
APA | Xia, Chunwei,Zhao, Jiacheng,Cui, Huimin,Feng, Xiaobing,&Xue, Jingling.(2019).DNNTune: Automatic Benchmarking DNN Models for Mobile-cloud Computing.ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION,16(4),26. |
MLA | Xia, Chunwei,et al."DNNTune: Automatic Benchmarking DNN Models for Mobile-cloud Computing".ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION 16.4(2019):26. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论