CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
HidingGAN: High Capacity Information Hiding with Generative Adversarial Network
Wang, Zihan1,2,3; Gao, Neng1,3; Wang, Xin3; Xiang, Ji3; Zha, Daren3; Li, Linghui4
2019-10-01
发表期刊COMPUTER GRAPHICS FORUM
ISSN0167-7055
卷号38期号:7页码:393-401
摘要Image steganography is the technique of hiding secret information within images. It is an important research direction in the security field. Benefitting from the rapid development of deep neural networks, many steganographic algorithms based on deep learning have been proposed. However, two problems remain to be solved in which the most existing methods are limited by small image size and information capacity. In this paper, to address these problems, we propose a high capacity image steganographic model named HidingGAN. The proposed model utilizes a new secret information preprocessing method and Inception-ResNet block to promote better integration of secret information and image features. Meanwhile, we introduce generative adversarial networks and perceptual loss to maintain the same statistical characteristics of cover images and stego images in the high-dimensional feature space, thereby improving the undetectability. Through these manners, our model reaches higher imperceptibility, security, and capacity. Experiment results show that our HidingGAN achieves the capacity of 4 bits-per-pixel (bpp) at 256 x 256 pixels, improving over the previous best result of 0.4 bpp at 32 x 32 pixels.
DOI10.1111/cgf.13846
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China ; National Natural Science Foundation of China[U163620068]
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号WOS:000496351100036
出版者WILEY
引用统计
被引频次:15[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/14979
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, Xin
作者单位1.Chinese Acad Sci, State Key Lab Informat Secur, Inst Informat Engn, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
3.Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Wang, Zihan,Gao, Neng,Wang, Xin,et al. HidingGAN: High Capacity Information Hiding with Generative Adversarial Network[J]. COMPUTER GRAPHICS FORUM,2019,38(7):393-401.
APA Wang, Zihan,Gao, Neng,Wang, Xin,Xiang, Ji,Zha, Daren,&Li, Linghui.(2019).HidingGAN: High Capacity Information Hiding with Generative Adversarial Network.COMPUTER GRAPHICS FORUM,38(7),393-401.
MLA Wang, Zihan,et al."HidingGAN: High Capacity Information Hiding with Generative Adversarial Network".COMPUTER GRAPHICS FORUM 38.7(2019):393-401.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Zihan]的文章
[Gao, Neng]的文章
[Wang, Xin]的文章
百度学术
百度学术中相似的文章
[Wang, Zihan]的文章
[Gao, Neng]的文章
[Wang, Xin]的文章
必应学术
必应学术中相似的文章
[Wang, Zihan]的文章
[Gao, Neng]的文章
[Wang, Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。