CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
SDM-NET: Deep Generative Network for Structured Deformable Mesh
Gao, Lin1,6; Yang, Jie1,2,6; Wu, Tong1,2,6; Yuan, Yu-Jie1,2,6; Fu, Hongbo3; Lai, Yu-Kun4; Zhang, Hao5
2019-11-01
发表期刊ACM TRANSACTIONS ON GRAPHICS
ISSN0730-0301
卷号38期号:6页码:15
摘要We introduce SDM-NET, a deep generative neural network which produces structured deformable meshes. Specifically, the network is trained to generate a spatial arrangement of closed, deformable mesh parts, which respects the global part structure of a shape collection, e.g., chairs, airplanes, etc. Our key observation is that while the overall structure of a 3D shape can be complex, the shape can usually be decomposed into a set of parts, each homeomorphic to a box, and the finer-scale geometry of the part can be recovered by deforming the box. The architecture of SDM-NET is that of a two-level variational autoencoder (VAE). At the part level, a PartVAE learns a deformable model of part geometries. At the structural level, we train a Structured Parts VAE (SP-VAE), which jointly learns the part structure of a shape collection and the part geometries, ensuring the coherence between global shape structure and surface details. Through extensive experiments and comparisons with the state-of-the-art deep generative models of shapes, we demonstrate the superiority of SDM-NET in generating meshes with visual quality, flexible topology, and meaningful structures, benefiting shape interpolation and other subsequent modeling tasks.
关键词Shape representation variational autoencoder structure geometric details generation
DOI10.1145/3355089.3356488
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61828204] ; National Natural Science Foundation of China[61872440] ; Beijing Municipal Natural Science Foundation[L182016] ; Youth Innovation Promotion Association CAS ; CCF-Tencent Open Fund ; Research Grants Council of the Hong Kong Special Administrative Region, China[CityU 11237116] ; Research Grants Council of the Hong Kong Special Administrative Region, China[CityU 11300615] ; Centre for Applied Computing and Interactive Media (ACIM) of School of Creative Media, CityU ; Sense Time Research Fund
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号WOS:000498397300091
出版者ASSOC COMPUTING MACHINERY
引用统计
被引频次:128[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/14939
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Gao, Lin
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.City Univ Hong Kong, Sch Creat Media, Hong Kong, Peoples R China
4.Cardiff Univ, Sch Comp Sci & Informat, Cardiff, S Glam, Wales
5.Simon Fraser Univ, Sch Comp Sci, Burnaby, BC, Canada
6.Chinese Acad Sci, Inst Comp Technol, Beijing Key Lab Mobile Comp & Pervas Device, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Gao, Lin,Yang, Jie,Wu, Tong,et al. SDM-NET: Deep Generative Network for Structured Deformable Mesh[J]. ACM TRANSACTIONS ON GRAPHICS,2019,38(6):15.
APA Gao, Lin.,Yang, Jie.,Wu, Tong.,Yuan, Yu-Jie.,Fu, Hongbo.,...&Zhang, Hao.(2019).SDM-NET: Deep Generative Network for Structured Deformable Mesh.ACM TRANSACTIONS ON GRAPHICS,38(6),15.
MLA Gao, Lin,et al."SDM-NET: Deep Generative Network for Structured Deformable Mesh".ACM TRANSACTIONS ON GRAPHICS 38.6(2019):15.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gao, Lin]的文章
[Yang, Jie]的文章
[Wu, Tong]的文章
百度学术
百度学术中相似的文章
[Gao, Lin]的文章
[Yang, Jie]的文章
[Wu, Tong]的文章
必应学术
必应学术中相似的文章
[Gao, Lin]的文章
[Yang, Jie]的文章
[Wu, Tong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。