CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Online Bayesian max-margin subspace learning for multi-view classification and regression
He, Jia1,2,4; Du, Changying3,5; Zhuang, Fuzhen1,4; Yin, Xin1; He, Qing1,4; Long, Guoping5
2019-10-25
发表期刊MACHINE LEARNING
ISSN0885-6125
页码31
摘要Multi-view data have become increasingly popular in many real-world applications where data are generated from different information channels or different views such as image + text, audio + video, and webpage + link data. Last decades have witnessed a number of studies devoted to multi-view learning algorithms, especially the predictive latent subspace learning approaches which aim at obtaining a subspace shared by multiple views and then learning models in the shared subspace. However, few efforts have been made to handle online multi-view learning scenarios. In this paper, we propose an online Bayesian multi-view learning algorithm which learns predictive subspace with the max-margin principle. Specifically, we first define the latent margin loss for classification or regression in the subspace, and then cast the learning problem into a variational Bayesian framework by exploiting the pseudo-likelihood and data augmentation idea. With the variational approximate posterior inferred from the past samples, we can naturally combine historical knowledge with new arrival data, in a Bayesian passive-aggressive style. Finally, we extensively evaluate our model on several real-world data sets and the experimental results show that our models can achieve superior performance, compared with a number of state-of-the-art competitors.
关键词Multi-view learning Online learning Bayesian subspace learning Max-margin Classification Regression
DOI10.1007/s10994-019-05853-8
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2018YFB1004300] ; National Natural Science Foundation of China[U1811461] ; National Natural Science Foundation of China[61602449] ; National Natural Science Foundation of China[U1836206] ; National Natural Science Foundation of China[61773361] ; Project of Youth Innovation Promotion Association CAS[2017146]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000492576000002
出版者SPRINGER
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/14921
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Du, Changying
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Huawei EI Innovat Lab, Beijing 100085, Peoples R China
3.Huawei Noahs Ark Lab, Beijing 100085, Peoples R China
4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
5.Chinese Acad Sci, Inst Software, Lab Parallel Software & Computat Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
He, Jia,Du, Changying,Zhuang, Fuzhen,et al. Online Bayesian max-margin subspace learning for multi-view classification and regression[J]. MACHINE LEARNING,2019:31.
APA He, Jia,Du, Changying,Zhuang, Fuzhen,Yin, Xin,He, Qing,&Long, Guoping.(2019).Online Bayesian max-margin subspace learning for multi-view classification and regression.MACHINE LEARNING,31.
MLA He, Jia,et al."Online Bayesian max-margin subspace learning for multi-view classification and regression".MACHINE LEARNING (2019):31.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[He, Jia]的文章
[Du, Changying]的文章
[Zhuang, Fuzhen]的文章
百度学术
百度学术中相似的文章
[He, Jia]的文章
[Du, Changying]的文章
[Zhuang, Fuzhen]的文章
必应学术
必应学术中相似的文章
[He, Jia]的文章
[Du, Changying]的文章
[Zhuang, Fuzhen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。