CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
SqueezeFlow: A Sparse CNN Accelerator Exploiting Concise Convolution Rules
Li, Jiajun1,2; Jiang, Shuhao1,2; Gong, Shijun1,2; Wu, Jingya1,2; Yan, Junchao1,2; Yan, Guihai1,2; Li, Xiaowei1,2
2019-11-01
发表期刊IEEE TRANSACTIONS ON COMPUTERS
ISSN0018-9340
卷号68期号:11页码:1663-1677
摘要Convolutional Neural Networks (CNNs) have been widely used in machine learning tasks. While delivering state-of-the-art accuracy, CNNs are known as both compute- and memory-intensive. This paper presents the SqueezeFlow accelerator architecture that exploits sparsity of CNN models for increased efficiency. Unlike prior accelerators that trade complexity for flexibility, SqueezeFlow exploits concise convolution rules to benefit from the reduction of computation and memory accesses as well as the acceleration of existing dense architectures without intrusive PE modifications. Specifically, SqueezeFlow employs a PT-OS-sparse dataflow that removes the ineffective computations while maintaining the regularity of CNN computations. We present a full design down to the layout at 65 nm, with an area of 4.80mm2 and power of 536.09mW. The experiments show that SqueezeFlow achieves a speedup of 2:9 on VGG16 compared to the dense architectures, with an area and power overhead of only 8.8 and 15.3 percent, respectively. On three representative sparse CNNs, SqueezeFlow improves the performance and energy efficiency by 1:8 and 1:5 over the state-of-the-art sparse accelerators.
关键词Convolutional neural networks accelerator architecture hardware acceleration
DOI10.1109/TC.2019.2924215
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61872336] ; National Natural Science Foundation of China[61532017] ; National Natural Science Foundation of China[61572470] ; National Natural Science Foundation of China[61432017] ; National Natural Science Foundation of China[61521092] ; National Natural Science Foundation of China[61376043] ; Youth Innovation Promotion Association, CAS[Y404441000]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS记录号WOS:000491426600009
出版者IEEE COMPUTER SOC
引用统计
被引频次:33[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/14911
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Yan, Guihai; Li, Xiaowei
作者单位1.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Li, Jiajun,Jiang, Shuhao,Gong, Shijun,et al. SqueezeFlow: A Sparse CNN Accelerator Exploiting Concise Convolution Rules[J]. IEEE TRANSACTIONS ON COMPUTERS,2019,68(11):1663-1677.
APA Li, Jiajun.,Jiang, Shuhao.,Gong, Shijun.,Wu, Jingya.,Yan, Junchao.,...&Li, Xiaowei.(2019).SqueezeFlow: A Sparse CNN Accelerator Exploiting Concise Convolution Rules.IEEE TRANSACTIONS ON COMPUTERS,68(11),1663-1677.
MLA Li, Jiajun,et al."SqueezeFlow: A Sparse CNN Accelerator Exploiting Concise Convolution Rules".IEEE TRANSACTIONS ON COMPUTERS 68.11(2019):1663-1677.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Jiajun]的文章
[Jiang, Shuhao]的文章
[Gong, Shijun]的文章
百度学术
百度学术中相似的文章
[Li, Jiajun]的文章
[Jiang, Shuhao]的文章
[Gong, Shijun]的文章
必应学术
必应学术中相似的文章
[Li, Jiajun]的文章
[Jiang, Shuhao]的文章
[Gong, Shijun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。