CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Trust-embedded collaborative deep generative model for social recommendation
Deng, Xiaoyi1; Wu, Yenchun Jim2; Zhuang, Fuzhen3
2020-01-30
发表期刊JOURNAL OF SUPERCOMPUTING
ISSN0920-8542
页码29
摘要Social networks can provide massive amounts of information for communication among users and communities. The trust relationships in social networks can be utilized to reveal user preferences for improving the quality of social recommendation, which aims to mitigate information overload and provide users with the most attractive and relevant items or services. However, the data sparsity and cold-start issue degrade recommendation performance significantly. To address these issues, a novel trust-embedded collaborative deep generative model (TCDG) is proposed for exploiting multisource information (content, rating and trust) to predict ratings. TCDG employs deep generative model to unsupervisedly learn deep latent representations for item content through an inference network in latent space instead of observation space. Meanwhile, TCDG adopts probabilistic matrix factorization to map users into low-dimensional latent feature spaces by trust relationships, which can reflect users' mutual influence on the formation of users' opinions more accurately and learn better implicit relationships between items and users from content, rating and trust. In addition, an approach with an annealing parameter to calculate the maximum a posteriori estimates is proposed to learn model parameters. Experiments using four real-world datasets are conducted to evaluate the prediction and top-ranking performance of our model. The results indicate that TDCG has better accuracy and robustness than other methods for making recommendations.
关键词Recommender system Deep generative model Collaborative topic regression Trust matrix factorization Deep learning
DOI10.1007/s11227-020-03178-1
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[71401058] ; National Natural Science Foundation of China[71672023] ; Program for New Century Excellent Talents in Fujian Province University (NCETFJ)[Z1625110] ; Ministry of Science & Technology, Taiwan[MOST 108-2511-H-003-034-MY2]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000510280400002
出版者SPRINGER
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/14771
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wu, Yenchun Jim
作者单位1.Huaqiao Univ, Business Sch, Quanzhou 362021, Peoples R China
2.Natl Taiwan Normal Univ, Grad Inst Global Business & Strategy, Taipei 10645, Taiwan
3.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Deng, Xiaoyi,Wu, Yenchun Jim,Zhuang, Fuzhen. Trust-embedded collaborative deep generative model for social recommendation[J]. JOURNAL OF SUPERCOMPUTING,2020:29.
APA Deng, Xiaoyi,Wu, Yenchun Jim,&Zhuang, Fuzhen.(2020).Trust-embedded collaborative deep generative model for social recommendation.JOURNAL OF SUPERCOMPUTING,29.
MLA Deng, Xiaoyi,et al."Trust-embedded collaborative deep generative model for social recommendation".JOURNAL OF SUPERCOMPUTING (2020):29.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Deng, Xiaoyi]的文章
[Wu, Yenchun Jim]的文章
[Zhuang, Fuzhen]的文章
百度学术
百度学术中相似的文章
[Deng, Xiaoyi]的文章
[Wu, Yenchun Jim]的文章
[Zhuang, Fuzhen]的文章
必应学术
必应学术中相似的文章
[Deng, Xiaoyi]的文章
[Wu, Yenchun Jim]的文章
[Zhuang, Fuzhen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。