CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Model Aggregation Method for Data Parallelism in Distributed Real-Time Machine Learning of Smart Sensing Equipment
Fan, Yuchen1,2; Zhang, Jilin1,2,3; Zhao, Nailiang1,2; Ren, Yongjian1,2; Wan, Jian1,2,4; Zhou, Li1,2; Shen, Zhongyu1,2; Wang, Jue5; Zhang, Juncong6; Wei, Zhenguo6
2019
发表期刊IEEE ACCESS
ISSN2169-3536
卷号7页码:172065-172073
摘要In distributed real-time machine learning of smart sensing equipment, training speed and training accuracy are two hard-to-choose trade-off performance measures directly influenced by the design of distributed machine learning algorithms. And it will influence effort of smart sensing equipment directly. We take the model aggregation method of distributed machine learning as a starting point. Due to the loss of accuracy caused by the direct averaging of the parameter average method, we developed the loss function weight reorder stochastic gradient descent method (LR-SGD). LR-SGD uses the loss function value to determine the weight of the work nodes when aggregating the model parameters, and it improves the performance of the parameter average method for nonconvex problems. As shown in the experiment results, our algorithm can improve the training accuracy by a maximum of approximately 0.57% for the Bulk Synchronous Parallel (BSP) model and approximately 6.30% for the Stale Synchronous Parallel (SSP) model.
关键词Distributed machine learning stochastic gradient descent model aggregation method smart sensing equipment
DOI10.1109/ACCESS.2019.2955547
收录类别SCI
语种英语
资助项目National Key Technology Research and Development Program[2018YFB0204001] ; National Natural Science Foundation of China[61672200] ; National Natural Science Foundation of China[61572163] ; Key Technology Research and Development Program of the Zhejiang Province[2019C01059] ; Zhejiang Natural Science Funds[LY17F020029] ; Zhejiang Natural Science Funds[LY16F020018] ; State Key Laboratory of Computer Architecture Project[CARCH201712] ; Hangzhou Dianzi University Postgraduate Research Innovation Fund Program[CXJJ2018052]
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000509374200057
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/14736
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhao, Nailiang; Ren, Yongjian
作者单位1.Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou 310018, Peoples R China
2.Minist Educ, Key Lab Complex Syst Modeling & Simulat, Hangzhou 310018, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing 100190, Peoples R China
4.Zhejiang Univ Sci & Technol, Hangzhou 310023, Peoples R China
5.Chinese Acad Sci, Comp Network Informat Ctr, Beijing 100190, Peoples R China
6.Zhejiang Dawning Informat Technol Co Ltd, Hangzhou 310051, Zhejiang, Peoples R China
推荐引用方式
GB/T 7714
Fan, Yuchen,Zhang, Jilin,Zhao, Nailiang,et al. Model Aggregation Method for Data Parallelism in Distributed Real-Time Machine Learning of Smart Sensing Equipment[J]. IEEE ACCESS,2019,7:172065-172073.
APA Fan, Yuchen.,Zhang, Jilin.,Zhao, Nailiang.,Ren, Yongjian.,Wan, Jian.,...&Wei, Zhenguo.(2019).Model Aggregation Method for Data Parallelism in Distributed Real-Time Machine Learning of Smart Sensing Equipment.IEEE ACCESS,7,172065-172073.
MLA Fan, Yuchen,et al."Model Aggregation Method for Data Parallelism in Distributed Real-Time Machine Learning of Smart Sensing Equipment".IEEE ACCESS 7(2019):172065-172073.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fan, Yuchen]的文章
[Zhang, Jilin]的文章
[Zhao, Nailiang]的文章
百度学术
百度学术中相似的文章
[Fan, Yuchen]的文章
[Zhang, Jilin]的文章
[Zhao, Nailiang]的文章
必应学术
必应学术中相似的文章
[Fan, Yuchen]的文章
[Zhang, Jilin]的文章
[Zhao, Nailiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。