CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Scheduling-Efficient Framework for Neural Network on Heterogeneous Distributed Systems and Mobile Edge Computing Systems
Zhou, Xiang1,2; Zhang, Jilin1,2,4; Wan, Jian1,2,3; Zhou, Li1,2; Wei, Zhenguo5; Zhang, Juncong5
2019
发表期刊IEEE ACCESS
ISSN2169-3536
卷号7页码:171853-171863
摘要As the volume of machine learning training data sets and the quantity of model parameters continue to grow, the pattern in which machine learning models are trained alone can no longer accommodate large-scale data environments. However, distributed systems and mobile edge computing systems are unpredictable and have heterogeneous nodes, resulting in interruptions in training or low convergence rate. In addition, existing distributed machine learning frameworks cannot guarantee a good convergence rate and speedup ratio in a variety of operating environments. Considering the above shortcomings, this paper proposes an adaptive scheduling framework for machine learning based on a heterogeneous distributed system and mobile edge computing system for machine learning model optimization. The framework detects and analyzes the dynamic changes of resources in the distributed system and mobile edge computing system through the resource detection system; then, the task scheduling system adaptively modifies the environmental parameters and schedules calculations. Relevant experiments conducted with the public data set show that the robustness and scalability of the framework are significantly better than the traditional distributed machine learning framework under the premise of ensuring high convergence rate.
关键词Heterogeneous distributed system mobile edge computing system adaptive scheduling large-scale machine learning
DOI10.1109/ACCESS.2019.2954897
收录类别SCI
语种英语
资助项目National Key Technology Research and Development Program[2018YFB0204001] ; National Natural Science Foundation of China[61672200] ; National Natural Science Foundation of China[61572163] ; Key Technology Research and Development Program of the Zhejiang Province[2019C01059] ; Key Technology Research and Development Program of the Zhejiang Province[2019C03135] ; Key Technology Research and Development Program of the Zhejiang Province[2019C03134] ; Zhejiang Natural Science Funds[LY-17F020029] ; State Key Laboratory of Computer Architecture[CARCH201712] ; Hangzhou Dianzi University Postgraduate Research Innovation Fund Program[CXJJ2018052]
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000509374200039
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/14711
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhang, Jilin; Wan, Jian
作者单位1.Hangzhou Dianzi Univ, Sch Comp, Hangzhou 310018, Peoples R China
2.Minist Educ, Key Lab Complex Syst Modeling & Simulat, Hangzhou 310018, Peoples R China
3.Zhejiang Univ Sci & Technol, Sch Comp Sci & Technol, Hangzhou 310023, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing 100190, Peoples R China
5.Zhejiang Dawning Informat Technol Co Ltd, Hangzhou 310051, Peoples R China
推荐引用方式
GB/T 7714
Zhou, Xiang,Zhang, Jilin,Wan, Jian,et al. Scheduling-Efficient Framework for Neural Network on Heterogeneous Distributed Systems and Mobile Edge Computing Systems[J]. IEEE ACCESS,2019,7:171853-171863.
APA Zhou, Xiang,Zhang, Jilin,Wan, Jian,Zhou, Li,Wei, Zhenguo,&Zhang, Juncong.(2019).Scheduling-Efficient Framework for Neural Network on Heterogeneous Distributed Systems and Mobile Edge Computing Systems.IEEE ACCESS,7,171853-171863.
MLA Zhou, Xiang,et al."Scheduling-Efficient Framework for Neural Network on Heterogeneous Distributed Systems and Mobile Edge Computing Systems".IEEE ACCESS 7(2019):171853-171863.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhou, Xiang]的文章
[Zhang, Jilin]的文章
[Wan, Jian]的文章
百度学术
百度学术中相似的文章
[Zhou, Xiang]的文章
[Zhang, Jilin]的文章
[Wan, Jian]的文章
必应学术
必应学术中相似的文章
[Zhou, Xiang]的文章
[Zhang, Jilin]的文章
[Wan, Jian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。