Institute of Computing Technology, Chinese Academy IR
3DACN: 3D Augmented convolutional network for time series data | |
Pei, Songwen1,2,3; Shen, Tianma1; Wang, Xianrong1; Gu, Chunhua1; Ning, Zhong2; Ye, Xiaochun3; Xiong, Naixue4 | |
2020-03-01 | |
发表期刊 | INFORMATION SCIENCES |
ISSN | 0020-0255 |
卷号 | 513页码:17-29 |
摘要 | Time series data and non-time series data are increasing in the credit system of financial market, so that an effective and intelligent data mining model plays a critical role to analyze hybrid time series data. In addition, traditional mining models sometimes fail to converge because of imbalanced data problem. Therefore, we propose a 3D Augmented Convolutional Network (3DACN) to extract time series information and solve the serious imbalanced data problem. By using the augmented algorithm on time series data, hybrid time series data are enlarged to generate more examples on the minority classes. 3DACN ensures the latent variables with an Expectation-Maximization(EM) algorithm to improve F1 score (F1) and Area Under Curve (AUC). Experimental results show that in the benchmark of Bank database, it can gain F1 score by 81.1% and the AUC by 88.2% respectively; while in the benchmark of Credit Risk database, the 3DACN can reach high performance on F1 score by 88.1% and the AUC by 88.4%. (C) 2019 Elsevier Inc. All rights reserved. |
关键词 | Time series data Gated recurrent units Convolutional neural network Expectation-maximization algorithm Augmented algorithm |
DOI | 10.1016/j.ins.2019.11.040 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Science Foundation of China[61975124] ; National Science Foundation of China[61775139] ; National Science Foundation of China[61332009] ; China Postdoctoral Science Foundation[2017M610230] ; Opening Project Foundation of the State Key Lab of Computer Architecture[CARCH 201807] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Information Systems |
WOS记录号 | WOS:000512221800002 |
出版者 | ELSEVIER SCIENCE INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/14668 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Pei, Songwen |
作者单位 | 1.Univ Shanghai Sci & Technol, Sch Opt Elect & Comp Engn, Shanghai 200093, Peoples R China 2.Fudan Univ, Sch Management, Shanghai 200433, Peoples R China 3.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing 100190, Peoples R China 4.Northeastern State Univ, Dept Comp Sci, Tahlequah, OK 74464 USA |
推荐引用方式 GB/T 7714 | Pei, Songwen,Shen, Tianma,Wang, Xianrong,et al. 3DACN: 3D Augmented convolutional network for time series data[J]. INFORMATION SCIENCES,2020,513:17-29. |
APA | Pei, Songwen.,Shen, Tianma.,Wang, Xianrong.,Gu, Chunhua.,Ning, Zhong.,...&Xiong, Naixue.(2020).3DACN: 3D Augmented convolutional network for time series data.INFORMATION SCIENCES,513,17-29. |
MLA | Pei, Songwen,et al."3DACN: 3D Augmented convolutional network for time series data".INFORMATION SCIENCES 513(2020):17-29. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论