CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Improving social and behavior recommendations via network embedding
Zhao, Weizhong1,6,7; Ma, Huifang2; Li, Zhixin3; Ao, Xiang4,8; Li, Ning5
2020-04-01
发表期刊INFORMATION SCIENCES
ISSN0020-0255
卷号516页码:125-141
摘要With the rapid development of information technology, information is generated at an unprecedented rate. Users are in great need of recommender systems to provide the potential friends or interested items for them. Social (i.e. friend) recommendation and behavior (i.e. item) recommendation are two types of popular services in real-world applications. Although researchers have proposed various models for each task, a unified model to address both tasks elegantly and effectively is still in demand. In this paper, we propose a model called SBRNE which integrates social and behavior recommendations into a unified framework through modeling social and behavior information simultaneously. Specifically, SBRNE models social and behavior information simultaneously via employing users' latent interests as a bridge, and derives improved performance on both social and behavior recommendation tasks. In addition, by introducing an efficient network embedding procedure, users' latent representations are advanced, and effectiveness and efficiency of recommendation tasks are improved accordingly. Results on both real-world and synthetic datasets demonstrate that: 1). SBRNE outperforms selected baselines on social and behavior recommendation tasks; 2). SBRNE performs stable on recommendation tasks for cold-start users; 3). The network embedding procedure can improve the effectiveness of SBRNE; 4). The hyper-parameter learning procedure can improve both the effectiveness and efficiency of SBRNE. (C) 2019 Elsevier Inc. All rights reserved.
关键词Social recommendation Behavior recommendation Network embedding Probabilistic matrix factorization
DOI10.1016/j.ins.2019.12.038
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61976204] ; National Natural Science Foundation of China[61966004] ; National Natural Science Foundation of China[61932008] ; National Natural Science Foundation of China[61802404] ; National Natural Science Foundation of China[61762078] ; National Natural Science Foundation of China[61663004] ; National Natural Science Foundation of China[61532008] ; Wuhan Science and Technology Program[2019010701011392] ; Fundamental Research Funds for the Central Universities[CCNU19TD004] ; Guangxi Key Laboratory of Trusted Software[kx201905]
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems
WOS记录号WOS:000515432200008
出版者ELSEVIER SCIENCE INC
引用统计
被引频次:16[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/14628
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhao, Weizhong
作者单位1.Cent China Normal Univ, Sch Comp, Wuhan, Peoples R China
2.Northeast Normal Univ, Coll Comp Sci & Engn, Lanzhou, Peoples R China
3.Guangxi Normal Univ, Guangxi Key Lab Multisource Informat Min & Secur, Guilin, Peoples R China
4.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, Beijing, Peoples R China
5.Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
6.Cent China Normal Univ, Hubei Key Lab Artificial Intelligence & Smart Lea, Wuhan, Peoples R China
7.Guilin Univ Elect Technol, Guangvi Key Lab Trusted Software, Guilin, Peoples R China
8.Univ Chinese Acad Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zhao, Weizhong,Ma, Huifang,Li, Zhixin,et al. Improving social and behavior recommendations via network embedding[J]. INFORMATION SCIENCES,2020,516:125-141.
APA Zhao, Weizhong,Ma, Huifang,Li, Zhixin,Ao, Xiang,&Li, Ning.(2020).Improving social and behavior recommendations via network embedding.INFORMATION SCIENCES,516,125-141.
MLA Zhao, Weizhong,et al."Improving social and behavior recommendations via network embedding".INFORMATION SCIENCES 516(2020):125-141.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhao, Weizhong]的文章
[Ma, Huifang]的文章
[Li, Zhixin]的文章
百度学术
百度学术中相似的文章
[Zhao, Weizhong]的文章
[Ma, Huifang]的文章
[Li, Zhixin]的文章
必应学术
必应学术中相似的文章
[Zhao, Weizhong]的文章
[Ma, Huifang]的文章
[Li, Zhixin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。