CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Online detection of anomaly behaviors based on multidimensional trajectories
Pan, Xinlong1,2; Wang, Haipeng1; Cheng, Xueqi2; Peng, Xuan1; He, You1
2020-06-01
发表期刊INFORMATION FUSION
ISSN1566-2535
卷号58页码:40-51
摘要In the surveillance domain, timely detection of anomaly behaviors is very important and is a great challenge to human operators due to information overload, fatigue and inattention. Many anomaly detection algorithms based on trajectories have been proposed for this problem. However, these algorithms generally have problems such as complex parameter setting, unfaithful statistical model, not well-calibrated false alarm rate, poor ability of online learning and sequential anomaly detection, etc. The theory of conformal prediction was introduced to solve these problems by constructing the sequential Hausdorff nearest neighbor conformal anomaly detector. Yet, it only considers position information of the targets and is not sensitive to velocity and course anomaly behaviors. And the run times are increasing as the increase of the data size, which is not appropriate for early warning surveillance application. In order to solve these problems, sequential multi-factor Hausdorff nearest neighbor conformal anomaly detector (SMFHNN-CAD) and sequential multi-factor Hausdorff nearest neighbor inductive conformal anomaly detector (SMFHNN-ICAD) based on multidimensional trajectories are proposed in this paper. Experiments in both simulated military scenario and realistic civilian scenario show the presented algorithm has a good performance to online detect anomaly behaviors and would have a wide prospect in early warning surveillance systems.
关键词Anomaly behavior Multidimensional Online detection Trajectory
DOI10.1016/j.inffus.2019.12.009
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[91538201] ; National Natural Science Foundation of China[61531020] ; National Natural Science Foundation of China[61790554] ; National Natural Science Foundation of China[61671157] ; Outstanding Youth Innovation Team Program of University in Shandong Province[2019KJN031] ; China Postdoctoral Science Foundation
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号WOS:000516799200004
出版者ELSEVIER
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/14549
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Pan, Xinlong; Wang, Haipeng
作者单位1.Naval Aviat Univ, Inst Informat Fus, Yantai 264001, Shandong, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, CAS Key Lab Network Data Sci & Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Pan, Xinlong,Wang, Haipeng,Cheng, Xueqi,et al. Online detection of anomaly behaviors based on multidimensional trajectories[J]. INFORMATION FUSION,2020,58:40-51.
APA Pan, Xinlong,Wang, Haipeng,Cheng, Xueqi,Peng, Xuan,&He, You.(2020).Online detection of anomaly behaviors based on multidimensional trajectories.INFORMATION FUSION,58,40-51.
MLA Pan, Xinlong,et al."Online detection of anomaly behaviors based on multidimensional trajectories".INFORMATION FUSION 58(2020):40-51.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Pan, Xinlong]的文章
[Wang, Haipeng]的文章
[Cheng, Xueqi]的文章
百度学术
百度学术中相似的文章
[Pan, Xinlong]的文章
[Wang, Haipeng]的文章
[Cheng, Xueqi]的文章
必应学术
必应学术中相似的文章
[Pan, Xinlong]的文章
[Wang, Haipeng]的文章
[Cheng, Xueqi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。