CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A Quantitative Exploration of Collaborative Pruning and Approximation Computing Towards Energy Efficient Neural Networks
He, Xin1; Yan, Guihai2; Lu, Wenyan3; Zhang, Xuan4; Liu, Ke5
2020-02-01
发表期刊IEEE DESIGN & TEST
ISSN2168-2356
卷号37期号:1页码:36-45
摘要Editor's note: This work has the goal of minimizing digital neural network computation energy consumption with little loss in accuracy. The authors describe a Dynamic Network Surgery based approach to network pruning, after which weights are incrementally selected for approximate multiplication. Considering which network components are necessary and determining the needed level of accuracy for them enables greater energy savings than solving either problem independently. - Robert P. Dick, University of Michigan
关键词Resilience Energy consumption Approximate computing Collaboration Computational modeling Artificial neural networks Optimization Neural network Energy efficient computing Network pruning Approximate computing
DOI10.1109/MDAT.2019.2943575
收录类别SCI
语种英语
资助项目National Science Foundation (NSF)[CNS-1739643] ; National Natural Science Foundation of China[61872336] ; National Natural Science Foundation of China[61572470] ; Youth Innovation Promotion Association, Chinese Academy of Science[Y404441000]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS记录号WOS:000515556300005
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/14535
专题中国科学院计算技术研究所期刊论文_英文
通讯作者He, Xin
作者单位1.Univ Michigan, Ann Arbor, MI 48109 USA
2.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing, Peoples R China
4.Washington Univ, St Louis, MO 63110 USA
5.Washington Univ, Elect & Syst Engn Dept, St Louis, MO 63110 USA
推荐引用方式
GB/T 7714
He, Xin,Yan, Guihai,Lu, Wenyan,et al. A Quantitative Exploration of Collaborative Pruning and Approximation Computing Towards Energy Efficient Neural Networks[J]. IEEE DESIGN & TEST,2020,37(1):36-45.
APA He, Xin,Yan, Guihai,Lu, Wenyan,Zhang, Xuan,&Liu, Ke.(2020).A Quantitative Exploration of Collaborative Pruning and Approximation Computing Towards Energy Efficient Neural Networks.IEEE DESIGN & TEST,37(1),36-45.
MLA He, Xin,et al."A Quantitative Exploration of Collaborative Pruning and Approximation Computing Towards Energy Efficient Neural Networks".IEEE DESIGN & TEST 37.1(2020):36-45.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[He, Xin]的文章
[Yan, Guihai]的文章
[Lu, Wenyan]的文章
百度学术
百度学术中相似的文章
[He, Xin]的文章
[Yan, Guihai]的文章
[Lu, Wenyan]的文章
必应学术
必应学术中相似的文章
[He, Xin]的文章
[Yan, Guihai]的文章
[Lu, Wenyan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。