CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
QMR:Q-learning based Multi-objective optimization Routing protocol for Flying Ad Hoc Networks
Liu, Jianmin1,2; Wang, Qi1; He, ChenTao1,2; Jaffres-Runser, Katia3; Xu, Yida1,2; Li, Zhenyu1; Xu, YongJun1
2020-01-15
发表期刊COMPUTER COMMUNICATIONS
ISSN0140-3664
卷号150页码:304-316
摘要A network with reliable and rapid communication is critical for Unmanned Aerial Vehicles (UAVs). Flying Ad Hoc Networks (FANETs) consisting of UAVs is a new paradigm of wireless communication. However, the highly dynamic topology of FANETs and limited energy of UAVs have brought great challenges to the routing design of FANETs. It is difficult for existing routing protocols for Mobile Ad Hoc Networks (MANETs) and Vehicular Ad Hoc Networks (VANETs) to adapt the high dynamics of FANETs. Moreover, few of existing routing protocols simultaneously meet the requirement of low delay and low energy consumption of FANETs. This paper proposes a novel Q-learning based Multi-objective optimization Routing protocol for FANETs to provide low-delay and low-energy service guarantees. Most of existing Q-learning based protocols use a fixed value for the Q-learning parameters. In contrast, Q-learning parameters can be adaptively adjusted in the proposed protocol to adapt to the high dynamics of FANETs. In addition, a new exploration and exploitation mechanism is also proposed to explore some undiscovered potential optimal routing path while exploiting the acquired knowledge. Instead of using past neighbor relationships, the proposed method re-estimates neighbor relationships in the routing decision process to select the more reliable next hop. Simulation results show that the proposed method can provide higher packet arrival ratio, lower delay and energy consumption than existing good performing Q-learning based routing method.
关键词Multi-objective routing FANETs Q-learning Adaptive parameters
DOI10.1016/j.comcom.2019.11.011
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China (NSFC)[61602447]
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000514749000029
出版者ELSEVIER
引用统计
被引频次:93[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/14438
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, Qi
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Univ Toulouse, IRIT ENSEEIHT, F-31061 Toulouse, France
推荐引用方式
GB/T 7714
Liu, Jianmin,Wang, Qi,He, ChenTao,et al. QMR:Q-learning based Multi-objective optimization Routing protocol for Flying Ad Hoc Networks[J]. COMPUTER COMMUNICATIONS,2020,150:304-316.
APA Liu, Jianmin.,Wang, Qi.,He, ChenTao.,Jaffres-Runser, Katia.,Xu, Yida.,...&Xu, YongJun.(2020).QMR:Q-learning based Multi-objective optimization Routing protocol for Flying Ad Hoc Networks.COMPUTER COMMUNICATIONS,150,304-316.
MLA Liu, Jianmin,et al."QMR:Q-learning based Multi-objective optimization Routing protocol for Flying Ad Hoc Networks".COMPUTER COMMUNICATIONS 150(2020):304-316.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Jianmin]的文章
[Wang, Qi]的文章
[He, ChenTao]的文章
百度学术
百度学术中相似的文章
[Liu, Jianmin]的文章
[Wang, Qi]的文章
[He, ChenTao]的文章
必应学术
必应学术中相似的文章
[Liu, Jianmin]的文章
[Wang, Qi]的文章
[He, ChenTao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。