Institute of Computing Technology, Chinese Academy IR
Realtime Simulation of Thin-Shell Deformable Materials Using CNN-Based Mesh Embedding | |
Tan, Qingyang1; Pan, Zherong2; Gao, Lin3; Manocha, Dinesh1 | |
2020-04-01 | |
发表期刊 | IEEE ROBOTICS AND AUTOMATION LETTERS |
ISSN | 2377-3766 |
卷号 | 5期号:2页码:2325-2332 |
摘要 | We address the problem of accelerating thin-shell deformable object simulations by dimension reduction. We present a new algorithm to embed a high-dimensional configuration space of deformable objects in a low-dimensional feature space, where the configurations of objects and feature points have approximate one-to-one mapping. Our key technique is a graph-based convolutional neural network (CNN) defined on meshes with arbitrary topologies and a new mesh embedding approach based on physics-inspired loss term. We have applied our approach to accelerate high-resolution thin shell simulations corresponding to cloth-like materials, where the configuration space has tens of thousands of degrees of freedom. We show that our physics-inspired embedding approach leads to higher accuracy compared with prior mesh embedding methods. Finally, we show that the temporal evolution of the mesh in the feature space can also be learned using a recurrent neural network (RNN) leading to fully learnable physics simulators. After training our learned simulator runs 500-10000x faster and the accuracy is high enough for robot manipulation tasks. |
关键词 | Simulation and animation dexterous manipulation |
DOI | 10.1109/LRA.2020.2970624 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | ARO[W911NF1810313] ; ARO[W911NF1910315] ; Intel ; National Natural Science Foundation of China[61872440] ; Beijing Municipal Natural Science Foundation[L182016] |
WOS研究方向 | Robotics |
WOS类目 | Robotics |
WOS记录号 | WOS:000526572000030 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/14210 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Pan, Zherong |
作者单位 | 1.Univ Maryland, Dept Comp Sci & Elect & Comp Engn, College Pk, MD 20740 USA 2.Univ N Carolina, Dept Comp Sci, Chapel Hill, NC 27514 USA 3.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Tan, Qingyang,Pan, Zherong,Gao, Lin,et al. Realtime Simulation of Thin-Shell Deformable Materials Using CNN-Based Mesh Embedding[J]. IEEE ROBOTICS AND AUTOMATION LETTERS,2020,5(2):2325-2332. |
APA | Tan, Qingyang,Pan, Zherong,Gao, Lin,&Manocha, Dinesh.(2020).Realtime Simulation of Thin-Shell Deformable Materials Using CNN-Based Mesh Embedding.IEEE ROBOTICS AND AUTOMATION LETTERS,5(2),2325-2332. |
MLA | Tan, Qingyang,et al."Realtime Simulation of Thin-Shell Deformable Materials Using CNN-Based Mesh Embedding".IEEE ROBOTICS AND AUTOMATION LETTERS 5.2(2020):2325-2332. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论