CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Perspective-Adaptive Convolutions for Scene Parsing
Zhang, Rui1,2; Tang, Sheng1,2; Zhang, Yongdong1,2; Li, Jintao1,2; Yan, Shuicheng3
2020-04-01
发表期刊IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
ISSN0162-8828
卷号42期号:4页码:909-924
摘要Many existing scene parsing methods adopt Convolutional Neural Networks with receptive fields of fixed sizes and shapes, which frequently results in inconsistent predictions of large objects and invisibility of small objects. To tackle this issue, we propose perspective-adaptive convolutions to acquire receptive fields of flexible sizes and shapes during scene parsing. Through adding a new perspective regression layer, we can dynamically infer the position-adaptive perspective coefficient vectors utilized to reshape the convolutional patches. Consequently, the receptive fields can be adjusted automatically according to the various sizes and perspective deformations of the objects in scene images. Our proposed convolutions are differentiable to learn the convolutional parameters and perspective coefficients in an end-to-end way without any extra training supervision of object sizes. Furthermore, considering that the standard convolutions lack contextual information and spatial dependencies, we propose a context adaptive bias to capture both local and global contextual information through average pooling on the local feature patches and global feature maps, followed by flexible attentive summing to the convolutional results. The attentive weights are position-adaptive and context-aware, and can be learned through adding an additional context regression layer. Experiments on Cityscapes and ADE20K datasets well demonstrate the effectiveness of the proposed methods.
关键词Shape Standards Strain Proposals Convolutional neural networks Training Task analysis Scene parsing convolutional neural networks perspective-adaptive convolutions context adaptive biases
DOI10.1109/TPAMI.2018.2890637
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61525206] ; National Natural Science Foundation of China[61572472]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000526541100009
出版者IEEE COMPUTER SOC
引用统计
被引频次:23[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/14203
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Tang, Sheng; Zhang, Yongdong
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.AI Inst Qihoo 360, Beijing 100025, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Rui,Tang, Sheng,Zhang, Yongdong,et al. Perspective-Adaptive Convolutions for Scene Parsing[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2020,42(4):909-924.
APA Zhang, Rui,Tang, Sheng,Zhang, Yongdong,Li, Jintao,&Yan, Shuicheng.(2020).Perspective-Adaptive Convolutions for Scene Parsing.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,42(4),909-924.
MLA Zhang, Rui,et al."Perspective-Adaptive Convolutions for Scene Parsing".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 42.4(2020):909-924.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Rui]的文章
[Tang, Sheng]的文章
[Zhang, Yongdong]的文章
百度学术
百度学术中相似的文章
[Zhang, Rui]的文章
[Tang, Sheng]的文章
[Zhang, Yongdong]的文章
必应学术
必应学术中相似的文章
[Zhang, Rui]的文章
[Tang, Sheng]的文章
[Zhang, Yongdong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。