CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Learning Multifunctional Binary Codes for Personalized Image Retrieval
Liu, Haomiao1,2,3; Wang, Ruiping1,2; Shan, Shiguang1,2; Chen, Xilin1,2
2020-03-17
发表期刊INTERNATIONAL JOURNAL OF COMPUTER VISION
ISSN0920-5691
页码20
摘要Due to the highly complex semantic information of images, even with the same query image, the expected content-based image retrieval results could be very different and personalized in different scenarios. However, most existing hashing methods only preserve one single type of semantic similarity, making them incapable of addressing such realistic retrieval tasks. To deal with this problem, we propose a unified hashing framework to encode multiple types of information into the binary codes by exploiting convolutional networks (CNNs). Specifically, we assume that typical retrieval tasks are generally defined in two aspects, i.e. high-level semantics (e.g. object categories) and visual attributes (e.g. object shape and color). To this end, our Dual Purpose Hashing model is trained to jointly preserve two kinds of similarities characterizing the two aspects respectively. Moreover, since images with both category and attribute labels are scarce, our model is carefully designed to leverage the abundant partially labelled data as training inputs to alleviate the risk of overfitting. With such a framework, the binary codes of new-coming images can be readily obtained by quantizing the outputs of a specific CNN layer, and different retrieval tasks can be achieved by using the binary codes in different ways. Experiments on two large-scale datasets show that our method achieves comparable or even better performance than those state-of-the-art methods specifically designed for each individual retrieval task while being more compact than the compared methods.
关键词Image retrieval Multi-task learning Hashing
DOI10.1007/s11263-020-01315-0
收录类别SCI
语种英语
资助项目973 Program[2015CB351802] ; Natural Science Foundation of China[61390511] ; Natural Science Foundation of China[61772500] ; CAS[QYZDJ-SSWJSC009] ; Youth Innovation Promotion Association[2015085]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000520662000005
出版者SPRINGER
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/14089
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, Ruiping
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Huawei EI Innovat Lab, Beijing 100085, Peoples R China
推荐引用方式
GB/T 7714
Liu, Haomiao,Wang, Ruiping,Shan, Shiguang,et al. Learning Multifunctional Binary Codes for Personalized Image Retrieval[J]. INTERNATIONAL JOURNAL OF COMPUTER VISION,2020:20.
APA Liu, Haomiao,Wang, Ruiping,Shan, Shiguang,&Chen, Xilin.(2020).Learning Multifunctional Binary Codes for Personalized Image Retrieval.INTERNATIONAL JOURNAL OF COMPUTER VISION,20.
MLA Liu, Haomiao,et al."Learning Multifunctional Binary Codes for Personalized Image Retrieval".INTERNATIONAL JOURNAL OF COMPUTER VISION (2020):20.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Haomiao]的文章
[Wang, Ruiping]的文章
[Shan, Shiguang]的文章
百度学术
百度学术中相似的文章
[Liu, Haomiao]的文章
[Wang, Ruiping]的文章
[Shan, Shiguang]的文章
必应学术
必应学术中相似的文章
[Liu, Haomiao]的文章
[Wang, Ruiping]的文章
[Shan, Shiguang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。