CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Matrix transformation of digital image and its periodicity
Qi, DX; Wang, DS; Yang, DL
2001-07-01
发表期刊PROGRESS IN NATURAL SCIENCE
ISSN1002-0071
卷号11期号:7页码:542-549
摘要The periodicity of a general matrix modular transformation is discussed, and a simple proof of a sufficient and necessary condition that a matrix transformation has periodicity is given. Using a block matrix method, the higher dimensional transformation and its inverse are studied, and a simple algorithm for calculating their periods is put forward. The security of n-dimensional Arnold transformation and its inverse is also discussed. The results show that the two transformations are applicable in scrambling and recovering images.
关键词digital image scrambling transformation Arnold transformation periodicity matrix transformation security
收录类别SCI
语种英语
WOS研究方向Materials Science ; Science & Technology - Other Topics
WOS类目Materials Science, Multidisciplinary ; Multidisciplinary Sciences
WOS记录号WOS:000169517400009
出版者TAYLOR & FRANCIS LTD
引用统计
被引频次:7[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/13415
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, DS
作者单位1.Sichuan Univ, Coll Math, Chengdu 610064, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, CAD Lab, Beijing 100080, Peoples R China
3.N China Univ Technol, CAD Res Ctr, Beijing 100041, Peoples R China
推荐引用方式
GB/T 7714
Qi, DX,Wang, DS,Yang, DL. Matrix transformation of digital image and its periodicity[J]. PROGRESS IN NATURAL SCIENCE,2001,11(7):542-549.
APA Qi, DX,Wang, DS,&Yang, DL.(2001).Matrix transformation of digital image and its periodicity.PROGRESS IN NATURAL SCIENCE,11(7),542-549.
MLA Qi, DX,et al."Matrix transformation of digital image and its periodicity".PROGRESS IN NATURAL SCIENCE 11.7(2001):542-549.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qi, DX]的文章
[Wang, DS]的文章
[Yang, DL]的文章
百度学术
百度学术中相似的文章
[Qi, DX]的文章
[Wang, DS]的文章
[Yang, DL]的文章
必应学术
必应学术中相似的文章
[Qi, DX]的文章
[Wang, DS]的文章
[Yang, DL]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。