CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A fast globally supervised learning algorithm for Gaussian Mixture Models
Ma, JY; Gao, W
2000
发表期刊WEB-AGE INFORMATION MANAGEMENT, PROCEEDINGS
ISSN0302-9743
卷号1846页码:449-454
摘要In this paper, a fast globally supervised learning algorithm for Gaussian Mixture Models based on the maximum relative entropy (MRE) is proposed. To reduce the computation complexity in Gaussian component probability densities, the concept of quasi-Gaussian probability density is used to compute the simplified probabilities. For four different learning algorithms such as the maximum mutual information algorithm (MMI), the maximum likelihood estimation (MLE), the generalized probabilistic descent (GPD) and the maximum relative entropy (MRE) algorithm, the random experiment approach is used to evaluate their performances. The experimental results show that the MRE is a better alternative algorithm in accuracy and training speed compared with GPD, MMI and MLE.
收录类别SCI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems ; Computer Science, Theory & Methods
WOS记录号WOS:000171155900042
出版者SPRINGER-VERLAG BERLIN
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/13325
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Ma, JY
作者单位Chinese Acad Sci, Inst Comp Technol, Beijing 100864, Peoples R China
推荐引用方式
GB/T 7714
Ma, JY,Gao, W. A fast globally supervised learning algorithm for Gaussian Mixture Models[J]. WEB-AGE INFORMATION MANAGEMENT, PROCEEDINGS,2000,1846:449-454.
APA Ma, JY,&Gao, W.(2000).A fast globally supervised learning algorithm for Gaussian Mixture Models.WEB-AGE INFORMATION MANAGEMENT, PROCEEDINGS,1846,449-454.
MLA Ma, JY,et al."A fast globally supervised learning algorithm for Gaussian Mixture Models".WEB-AGE INFORMATION MANAGEMENT, PROCEEDINGS 1846(2000):449-454.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ma, JY]的文章
[Gao, W]的文章
百度学术
百度学术中相似的文章
[Ma, JY]的文章
[Gao, W]的文章
必应学术
必应学术中相似的文章
[Ma, JY]的文章
[Gao, W]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。