Institute of Computing Technology, Chinese Academy IR
A simplified architecture for modulo (2(n)+1) multiplication | |
Ma, YT | |
1998-03-01 | |
发表期刊 | IEEE TRANSACTIONS ON COMPUTERS |
ISSN | 0018-9340 |
卷号 | 47期号:3页码:333-337 |
摘要 | The module (2(n) + 1) multiplication is widely used in the computation of convolutions and in RNS arithmetic and, thus, it is important to reduce the calculation delay. This paper presents a concept of a module (2(n) + 1) carry save adder (MCSA) and uses two MCSAs to perform the residue reduction. We also apply Booth's algorithm to the module (2(n) + 1) multiplication scheme in order to reduce the number of partial products. With these techniques, the new architecture reduces the multiplier's calculation delay and is suitable for VLSI implementation for moderate and large n (n greater than or equal to 16). |
关键词 | convolution Fermat number transform RNS arithmetic modulo (2(n)+1) multiplication Booth's algorithm Wallace tree carry save adder CSA array carry lookahead adder |
收录类别 | SCI |
语种 | 英语 |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000072705400007 |
出版者 | IEEE COMPUTER SOC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/13265 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Ma, YT |
作者单位 | Chinese Acad Sci, Comp Technol Inst, Ctr High Performance Comp, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Ma, YT. A simplified architecture for modulo (2(n)+1) multiplication[J]. IEEE TRANSACTIONS ON COMPUTERS,1998,47(3):333-337. |
APA | Ma, YT.(1998).A simplified architecture for modulo (2(n)+1) multiplication.IEEE TRANSACTIONS ON COMPUTERS,47(3),333-337. |
MLA | Ma, YT."A simplified architecture for modulo (2(n)+1) multiplication".IEEE TRANSACTIONS ON COMPUTERS 47.3(1998):333-337. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Ma, YT]的文章 |
百度学术 |
百度学术中相似的文章 |
[Ma, YT]的文章 |
必应学术 |
必应学术中相似的文章 |
[Ma, YT]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论