Institute of Computing Technology, Chinese Academy IR
Robust ensemble learning for mining noisy data streams | |
Zhang, Peng1; Zhu, Xingquan2; Shi, Yong3,4; Guo, Li1; Wu, Xindong5,6 | |
2011 | |
发表期刊 | DECISION SUPPORT SYSTEMS |
ISSN | 0167-9236 |
卷号 | 50期号:2页码:469-479 |
摘要 | In this paper, we study the problem of learning from concept drifting data streams with noise, where samples in a data stream may be mislabeled or contain erroneous values. Our essential goal is to build a robust prediction model from noisy stream data to accurately predict future samples. For noisy data sources, most existing works rely on data preprocessing techniques to cleanse noisy samples before the training of decision models. In data stream environments, these data preprocessing techniques are, unfortunately, hard to apply, mainly because the concept drifting in a data stream may make it very difficult to differentiate noise from samples of changing concepts. Accordingly, we propose an aggregate ensemble (AE) learning framework. The aim of AE is to build a robust ensemble model that can tolerate data errors. Theoretical and empirical studies on both synthetic and real-world data streams demonstrate that the proposed AE learning framework is capable of building accurate classification models from noisy data streams. (C) 2010 Elsevier B.V. All rights reserved. |
关键词 | Data stream Classification Ensemble learning Noise Concept drifting |
DOI | 10.1016/j.dss.2010.11.004 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Science Foundation of China (NSFC)[61003167] ; National Science Foundation of China (NSFC)[60828005] ; National Science Foundation of China (NSFC)[70621001] ; National Science Foundation of China (NSFC)[70921061] ; China 973 Project[2007CB311100] ; Chinese Academy of Sciences (Overseas Collaboration Group) ; US National Science Foundation[CCF-0905337] ; Australian ARC[DP1093762] |
WOS研究方向 | Computer Science ; Operations Research & Management Science |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Operations Research & Management Science |
WOS记录号 | WOS:000286851300011 |
出版者 | ELSEVIER SCIENCE BV |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/13137 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Zhang, Peng |
作者单位 | 1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China 2.Univ Technol Sydney, Ctr Quantum Computat & Intelligent Syst, Sydney, NSW 2007, Australia 3.Chinese Acad Sci, Res Ctr Fictitious Econ & Data Sci, Beijing 100190, Peoples R China 4.Univ Nebraska, Coll Informat Sci & Technol, Omaha, NE 68182 USA 5.Hefei Univ Technol, Sch Comp Sci & Informat Eng, Hefei 230009, Peoples R China 6.Univ Vermont, Dept Comp Sci, Burlington, VT 05405 USA |
推荐引用方式 GB/T 7714 | Zhang, Peng,Zhu, Xingquan,Shi, Yong,et al. Robust ensemble learning for mining noisy data streams[J]. DECISION SUPPORT SYSTEMS,2011,50(2):469-479. |
APA | Zhang, Peng,Zhu, Xingquan,Shi, Yong,Guo, Li,&Wu, Xindong.(2011).Robust ensemble learning for mining noisy data streams.DECISION SUPPORT SYSTEMS,50(2),469-479. |
MLA | Zhang, Peng,et al."Robust ensemble learning for mining noisy data streams".DECISION SUPPORT SYSTEMS 50.2(2011):469-479. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论