CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Robust ensemble learning for mining noisy data streams
Zhang, Peng1; Zhu, Xingquan2; Shi, Yong3,4; Guo, Li1; Wu, Xindong5,6
2011
发表期刊DECISION SUPPORT SYSTEMS
ISSN0167-9236
卷号50期号:2页码:469-479
摘要In this paper, we study the problem of learning from concept drifting data streams with noise, where samples in a data stream may be mislabeled or contain erroneous values. Our essential goal is to build a robust prediction model from noisy stream data to accurately predict future samples. For noisy data sources, most existing works rely on data preprocessing techniques to cleanse noisy samples before the training of decision models. In data stream environments, these data preprocessing techniques are, unfortunately, hard to apply, mainly because the concept drifting in a data stream may make it very difficult to differentiate noise from samples of changing concepts. Accordingly, we propose an aggregate ensemble (AE) learning framework. The aim of AE is to build a robust ensemble model that can tolerate data errors. Theoretical and empirical studies on both synthetic and real-world data streams demonstrate that the proposed AE learning framework is capable of building accurate classification models from noisy data streams. (C) 2010 Elsevier B.V. All rights reserved.
关键词Data stream Classification Ensemble learning Noise Concept drifting
DOI10.1016/j.dss.2010.11.004
收录类别SCI
语种英语
资助项目National Science Foundation of China (NSFC)[61003167] ; National Science Foundation of China (NSFC)[60828005] ; National Science Foundation of China (NSFC)[70621001] ; National Science Foundation of China (NSFC)[70921061] ; China 973 Project[2007CB311100] ; Chinese Academy of Sciences (Overseas Collaboration Group) ; US National Science Foundation[CCF-0905337] ; Australian ARC[DP1093762]
WOS研究方向Computer Science ; Operations Research & Management Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Operations Research & Management Science
WOS记录号WOS:000286851300011
出版者ELSEVIER SCIENCE BV
引用统计
被引频次:53[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/13137
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhang, Peng
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Technol Sydney, Ctr Quantum Computat & Intelligent Syst, Sydney, NSW 2007, Australia
3.Chinese Acad Sci, Res Ctr Fictitious Econ & Data Sci, Beijing 100190, Peoples R China
4.Univ Nebraska, Coll Informat Sci & Technol, Omaha, NE 68182 USA
5.Hefei Univ Technol, Sch Comp Sci & Informat Eng, Hefei 230009, Peoples R China
6.Univ Vermont, Dept Comp Sci, Burlington, VT 05405 USA
推荐引用方式
GB/T 7714
Zhang, Peng,Zhu, Xingquan,Shi, Yong,et al. Robust ensemble learning for mining noisy data streams[J]. DECISION SUPPORT SYSTEMS,2011,50(2):469-479.
APA Zhang, Peng,Zhu, Xingquan,Shi, Yong,Guo, Li,&Wu, Xindong.(2011).Robust ensemble learning for mining noisy data streams.DECISION SUPPORT SYSTEMS,50(2),469-479.
MLA Zhang, Peng,et al."Robust ensemble learning for mining noisy data streams".DECISION SUPPORT SYSTEMS 50.2(2011):469-479.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Peng]的文章
[Zhu, Xingquan]的文章
[Shi, Yong]的文章
百度学术
百度学术中相似的文章
[Zhang, Peng]的文章
[Zhu, Xingquan]的文章
[Shi, Yong]的文章
必应学术
必应学术中相似的文章
[Zhang, Peng]的文章
[Zhu, Xingquan]的文章
[Shi, Yong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。