CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Localized Multiple Kernel Learning for Realistic Human Action Recognition in Videos
Song, Yan1; Zheng, Yan-Tao2; Tang, Sheng; Zhou, Xiangdong3; Zhang, Yongdong; Lin, Shouxun; Chua, Tat-Seng4
2011-09-01
发表期刊IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
ISSN1051-8215
卷号21期号:9页码:1193-1202
摘要Realistic human action recognition in videos has been a useful yet challenging task. Video shots of same actions may present huge intra-class variations in terms of visual appearance, kinetic patterns, video shooting, and editing styles. Heterogeneous feature representations of videos pose another challenge on how to effectively handle the redundancy, complementariness and disagreement in these features. This paper proposes a localized multiple kernel learning (L-MKL) algorithm to tackle the issues above. L-MKL integrates the localized classifier ensemble learning and multiple kernel learning in a unified framework to leverage the strengths of both. The basis of L-MKL is to build multiple kernel classifiers on diverse features at subspace localities of heterogeneous representations. L-MKL integrates the discriminability of complementary features locally and enables localized MKL classifiers to deliver better performance in its own region of expertise. Specifically, L-MKL develops a locality gating model to partition the input space of heterogeneous representations to a set of localities of simpler data structure. Each locality then learns its localized optimal combination of Mercer kernels of heterogeneous features. Finally, the gating model coordinates the localized multiple kernel classifiers globally to perform action recognition. Experiments on two datasets show that the proposed approach delivers promising performance.
关键词Action recognition localized classifier multiple kernel learning
DOI10.1109/TCSVT.2011.2130230
收录类别SCI
语种英语
资助项目National Basic Research Program of China (973 Program)[2007CB311105] ; National Nature Science Foundation of China[60873165] ; Beijing Municipal Education Commission
WOS研究方向Engineering
WOS类目Engineering, Electrical & Electronic
WOS记录号WOS:000294669900002
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:24[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/12980
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Song, Yan
作者单位1.Chinese Acad Sci, Lab Adv Comp Res, Inst Comp Technol, Beijing 100190, Peoples R China
2.ASTAR, Inst Infocomm Res, Singapore, Singapore
3.Fudan Univ, Sch Comp Sci & Technol, Shanghai 200433, Peoples R China
4.Natl Univ Singapore, Sch Comp, Singapore 117548, Singapore
推荐引用方式
GB/T 7714
Song, Yan,Zheng, Yan-Tao,Tang, Sheng,et al. Localized Multiple Kernel Learning for Realistic Human Action Recognition in Videos[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,2011,21(9):1193-1202.
APA Song, Yan.,Zheng, Yan-Tao.,Tang, Sheng.,Zhou, Xiangdong.,Zhang, Yongdong.,...&Chua, Tat-Seng.(2011).Localized Multiple Kernel Learning for Realistic Human Action Recognition in Videos.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,21(9),1193-1202.
MLA Song, Yan,et al."Localized Multiple Kernel Learning for Realistic Human Action Recognition in Videos".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 21.9(2011):1193-1202.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Song, Yan]的文章
[Zheng, Yan-Tao]的文章
[Tang, Sheng]的文章
百度学术
百度学术中相似的文章
[Song, Yan]的文章
[Zheng, Yan-Tao]的文章
[Tang, Sheng]的文章
必应学术
必应学术中相似的文章
[Song, Yan]的文章
[Zheng, Yan-Tao]的文章
[Tang, Sheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。