CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
An approach for adaptive associative classification
Wang, Xiaofeng1,2; Yue, Kun3; Niu, WenJia4; Shi, Zhongzhi1
2011-09-01
发表期刊EXPERT SYSTEMS WITH APPLICATIONS
ISSN0957-4174
卷号38期号:9页码:11873-11883
摘要As a branch of classification, associative classification combines the basic ideas of association rule mining and general classification. Previous studies show that associative classification can achieve a higher classification accuracy comparing with traditional classification methods, such as C4.5. It is known that new frequent patterns may emerge from the classified resources during classification, and these newly emerging frequent patterns can be used to build new classification rules. However, this dynamic characteristics in associative classification has not been well reflected in traditional methods. In this paper, we propose an enhanced associative classification method by integrating the dynamic property in the process of associative classification. In the proposed method, we employ co-training to refine the discovered emerging frequent patterns for classification rule extension and utilize the maximum entropy model for class label prediction. The empirical study shows that our method can be used to classify increasing resources efficiently and effectively. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
关键词Associative classification Frequent pattern mining Co-training Emerging frequent pattern Maximum entropy model
DOI10.1016/j.eswa.2011.03.079
收录类别SCI
语种英语
资助项目National Basic Research Priorities Programme[2007CB311004] ; National Basic Research Program of China (973 Program)[2011CB302803] ; National S&T Major Project of China[2010ZX03006-006] ; CAS[KGCX2-YW-149] ; National Natural Science Foundation of China[61035003] ; National Natural Science Foundation of China[60933004] ; National Natural Science Foundation of China[61072085] ; National Natural Science Foundation of China[60903141] ; National Natural Science Foundation of China[60970088] ; National Natural Science Foundation of China[61063009]
WOS研究方向Computer Science ; Engineering ; Operations Research & Management Science
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Operations Research & Management Science
WOS记录号WOS:000291118500132
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
被引频次:14[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/12968
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, Xiaofeng
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Chinese Acad Sci, Grad Univ, Beijing 100190, Peoples R China
3.Yunnan Univ, Sch Informat Sci & Engn, Dept Comp Sci & Engn, Kunming 650091, Peoples R China
4.Chinese Acad Sci, Inst Acoust, High Performance Network Lab, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Wang, Xiaofeng,Yue, Kun,Niu, WenJia,et al. An approach for adaptive associative classification[J]. EXPERT SYSTEMS WITH APPLICATIONS,2011,38(9):11873-11883.
APA Wang, Xiaofeng,Yue, Kun,Niu, WenJia,&Shi, Zhongzhi.(2011).An approach for adaptive associative classification.EXPERT SYSTEMS WITH APPLICATIONS,38(9),11873-11883.
MLA Wang, Xiaofeng,et al."An approach for adaptive associative classification".EXPERT SYSTEMS WITH APPLICATIONS 38.9(2011):11873-11883.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Xiaofeng]的文章
[Yue, Kun]的文章
[Niu, WenJia]的文章
百度学术
百度学术中相似的文章
[Wang, Xiaofeng]的文章
[Yue, Kun]的文章
[Niu, WenJia]的文章
必应学术
必应学术中相似的文章
[Wang, Xiaofeng]的文章
[Yue, Kun]的文章
[Niu, WenJia]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。