CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Mining concise and distinctive affine-stable features for object detection in large corpus
Gao, Ke1; Zhang, Yongdong1; Zhang, Wei1,2; Lin, Shouxun1
2011
发表期刊INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
ISSN0020-7160
卷号88期号:18页码:3953-3962
摘要Invariant features extraction is important for object detection. Affine-SIFT (ASIFT) [J.M. Morel and G. Yu, ASIFT: A new framework for fully affine invariant image comparison, SIAM J. Imaging Sci. 2(2) (2009)] has been proved to be fully affine-invariant. However, the high cost of memory and query time hampers its application in large-scale object detection tasks. In this paper, we present a novel algorithm for mining concise and distinctive invariant features called affine-stable characteristics (ASC). Two new notions, global stability and local stability, are introduced to calculate the robustness of each feature from two mutually complementary aspects. Furthermore, to make these stable characteristics more distinctive, spatial information taken from several representative scales is encoded in a concise method. Experiments show that the robustness of our ASC is comparable with ASIFT, while the cost of memory can be reduced significantly to only 5%. Moreover, compared with the traditional SIFT method [ D. Lowe, Distinctive image features from scale invariant keypoints, Int. J. Comput. Vis. 60(2) (2004), pp. 91-110], the accuracy of object detection can be improved 38.6% by our ASC using similar amount of features.
关键词object detection feature extraction affine-stable features data mining spatial information
DOI10.1080/00207160.2011.583350
收录类别SCI
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:000297692200013
出版者TAYLOR & FRANCIS LTD
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/12794
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Gao, Ke
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
2.Chinese Acad Sci, Grad Univ, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Gao, Ke,Zhang, Yongdong,Zhang, Wei,et al. Mining concise and distinctive affine-stable features for object detection in large corpus[J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS,2011,88(18):3953-3962.
APA Gao, Ke,Zhang, Yongdong,Zhang, Wei,&Lin, Shouxun.(2011).Mining concise and distinctive affine-stable features for object detection in large corpus.INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS,88(18),3953-3962.
MLA Gao, Ke,et al."Mining concise and distinctive affine-stable features for object detection in large corpus".INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 88.18(2011):3953-3962.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gao, Ke]的文章
[Zhang, Yongdong]的文章
[Zhang, Wei]的文章
百度学术
百度学术中相似的文章
[Gao, Ke]的文章
[Zhang, Yongdong]的文章
[Zhang, Wei]的文章
必应学术
必应学术中相似的文章
[Gao, Ke]的文章
[Zhang, Yongdong]的文章
[Zhang, Wei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。