CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Active Learning From Stream Data Using Optimal Weight Classifier Ensemble
Zhu, Xingquan1,2; Zhang, Peng3; Lin, Xiaodong4; Shi, Yong5
2010-12-01
发表期刊IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS
ISSN1083-4419
卷号40期号:6页码:1607-1621
摘要In this paper, we propose a new research problem on active learning from data streams, where data volumes grow continuously, and labeling all data is considered expensive and impractical. The objective is to label a small portion of stream data from which a model is derived to predict future instances as accurately as possible. To tackle the technical challenges raised by the dynamic nature of the stream data, i.e., increasing data volumes and evolving decision concepts, we propose a classifier-ensemble-based active learning framework that selectively labels instances from data streams to build a classifier ensemble. We argue that a classifier ensemble's variance directly corresponds to its error rate, and reducing a classifier ensemble's variance is equivalent to improving its prediction accuracy. Because of this, one should label instances toward the minimization of the variance of the underlying classifier ensemble. Accordingly, we introduce a minimum-variance (MV) principle to guide the instance labeling process for data streams. In addition, we derive an optimal-weight calculation method to determine the weight values for the classifier ensemble. The MV principle and the optimal weighting module are combined to build an active learning framework for data streams. Experimental results on synthetic and real-world data demonstrate the performance of the proposed work in comparison with other approaches.
关键词Active learning classifier ensemble stream data
DOI10.1109/TSMCB.2010.2042445
收录类别SCI
语种英语
资助项目Australia Discovery Grant[DP1093762] ; National Science Foundation of China (NSFC)[60674109] ; National Science Foundation of China (NSFC)[70621001] ; National Science Foundation of China (NSFC)[70531040] ; Chinese Ministry of Science and Technology[2004CB720103]
WOS研究方向Automation & Control Systems ; Computer Science
WOS类目Automation & Control Systems ; Computer Science, Artificial Intelligence ; Computer Science, Cybernetics
WOS记录号WOS:000284364400016
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:88[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/12255
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhu, Xingquan
作者单位1.Florida Atlantic Univ, Dept Comp Sci & Engn, Boca Raton, FL 33431 USA
2.Univ Technol Sydney, Fac Engn & Informat Technol, QCIS Ctr, Sydney, NSW 2007, Australia
3.Chinese Acad Sci, Inst Comp Technol, Beijing 100090, Peoples R China
4.Rutgers State Univ, Rutgers Business Sch, Dept Management Sci & Informat Syst, Newark, NJ 07102 USA
5.Univ Nebraska, Coll Informat Sci & Technol, Omaha, NE 68118 USA
推荐引用方式
GB/T 7714
Zhu, Xingquan,Zhang, Peng,Lin, Xiaodong,et al. Active Learning From Stream Data Using Optimal Weight Classifier Ensemble[J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS,2010,40(6):1607-1621.
APA Zhu, Xingquan,Zhang, Peng,Lin, Xiaodong,&Shi, Yong.(2010).Active Learning From Stream Data Using Optimal Weight Classifier Ensemble.IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS,40(6),1607-1621.
MLA Zhu, Xingquan,et al."Active Learning From Stream Data Using Optimal Weight Classifier Ensemble".IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS 40.6(2010):1607-1621.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhu, Xingquan]的文章
[Zhang, Peng]的文章
[Lin, Xiaodong]的文章
百度学术
百度学术中相似的文章
[Zhu, Xingquan]的文章
[Zhang, Peng]的文章
[Lin, Xiaodong]的文章
必应学术
必应学术中相似的文章
[Zhu, Xingquan]的文章
[Zhang, Peng]的文章
[Lin, Xiaodong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。