CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
An improved centroid classifier for text categorization
Tan, Songbo
2008-07-01
发表期刊EXPERT SYSTEMS WITH APPLICATIONS
ISSN0957-4174
卷号35期号:1-2页码:279-285
摘要In the context of text categorization, Centroid Classifier has proved to be a simple and yet efficient method. However, it often suffers from the inductive bias or model misfit incurred by its assumption. In order to address this issue, we propose a novel batch-updated approach to enhance the performance of Centroid Classifier. The main idea behind this method is to take advantage of training errors to successively update the classification model by batch. The technique is simple to implement and flexible to text data. The experimental results indicate that the technique can significantly improve the performance of Centroid Classifier. (c) 2007 Elsevier Ltd. All rights reserved.
关键词text classification information retrievals data mining
DOI10.1016/j.eswa.2007.06.028
收录类别SCI
语种英语
WOS研究方向Computer Science ; Engineering ; Operations Research & Management Science
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Operations Research & Management Science
WOS记录号WOS:000257617100028
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
被引频次:40[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/11386
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Tan, Songbo
作者单位Chinese Acad Sci, Inst Comp Technol, Intelligent Software Dept, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Tan, Songbo. An improved centroid classifier for text categorization[J]. EXPERT SYSTEMS WITH APPLICATIONS,2008,35(1-2):279-285.
APA Tan, Songbo.(2008).An improved centroid classifier for text categorization.EXPERT SYSTEMS WITH APPLICATIONS,35(1-2),279-285.
MLA Tan, Songbo."An improved centroid classifier for text categorization".EXPERT SYSTEMS WITH APPLICATIONS 35.1-2(2008):279-285.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tan, Songbo]的文章
百度学术
百度学术中相似的文章
[Tan, Songbo]的文章
必应学术
必应学术中相似的文章
[Tan, Songbo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。