CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Neighbor-weighted K-nearest neighbor for unbalanced text corpus
Tan, SB
2005-05-01
发表期刊EXPERT SYSTEMS WITH APPLICATIONS
ISSN0957-4174
卷号28期号:4页码:667-671
摘要Text categorization or classification is the automated assigning of text documents to pre-defined classes based on their contents. Many of classification algorithms usually assume that the training examples are evenly distributed among different classes. However, unbalanced data sets often appear in many practical applications. In order to deal with uneven text sets, we propose the neighbor-weighted K-nearest neighbor algorithm, i.e. NWKNN. The experimental results indicate that our algorithm NWKNN achieves significant classification performance improvement on imbalanced corpora. (c) 2005 Elsevier Ltd. All rights reserved.
关键词text classification K-nearest neighbor (KNN) information retrieval data mining
DOI10.1016/j.eswa.2004.12.023
收录类别SCI
语种英语
WOS研究方向Computer Science ; Engineering ; Operations Research & Management Science
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Operations Research & Management Science
WOS记录号WOS:000228124200007
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
被引频次:221[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/10166
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Tan, SB
作者单位1.Chinese Acad Sci, Inst Comp Technol, Software Dept, Beijing 100080, Peoples R China
2.Chinese Acad Sci, Grad Sch, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Tan, SB. Neighbor-weighted K-nearest neighbor for unbalanced text corpus[J]. EXPERT SYSTEMS WITH APPLICATIONS,2005,28(4):667-671.
APA Tan, SB.(2005).Neighbor-weighted K-nearest neighbor for unbalanced text corpus.EXPERT SYSTEMS WITH APPLICATIONS,28(4),667-671.
MLA Tan, SB."Neighbor-weighted K-nearest neighbor for unbalanced text corpus".EXPERT SYSTEMS WITH APPLICATIONS 28.4(2005):667-671.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tan, SB]的文章
百度学术
百度学术中相似的文章
[Tan, SB]的文章
必应学术
必应学术中相似的文章
[Tan, SB]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。